Skip to main content
Log in

DFT and MP2 investigations of L-proline and its hydrated complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A theoretical study of L-proline-nH2O (n = 1–3) has been performed using the hybrid DFT-B3LYP and MP2 methods together with the 6-311++G(d,p) basis set. The results show that the P2 conformer is energetically favorable when forming a hydrated structure, and the hydration of the carboxyl group leads to the greatest stability. For hydrated complexes, the adiabatic and vertical singlet–triplet excitation energies tend to decrease with the addition of water molecules. The hydration energy indicates that in the hydrated complexes the order of stability is: binding site 2 > binding site 1 > binding site 3, and binding site 12 > binding site 23 > binding site 13. As water molecules are added, the stabilities of these hydrated structures gradually increase. In addition, an infrared frequency analysis indicated that there are some differences in the low-frequency range, which are mainly dominated by the O–H stretching or bending vibrations of different water molecules. All of these results should aid our understanding of molecular behavior and provide reference data for further studies of biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Deckert-Gaudig T, Rauls E, Deckert V (2010) J Phys Chem C 114:7412–7420

    Article  CAS  Google Scholar 

  2. Soto-Verdugo V, Metiu H, Gwinn E (2010) J Chem Phys 132:195102(1–10)

    Article  Google Scholar 

  3. Parker AW, Lin CY, George MW, Towrie M, Kuimova MK (2010) J Phys Chem B 114:3660–3667

    Article  CAS  Google Scholar 

  4. Semencic MC, Heinze K, Forster C, Rapic V (2010) Eur J Inorg Chem 2010:1089–1097

    Article  Google Scholar 

  5. Morera-Boado C, Mora-Diez N, Montero-Cabrera LA, Alonso-Becerra E, González-Jonte RH, de la Vega JMG (2010) J Mol Graph Model 28:604–611

    Article  CAS  Google Scholar 

  6. Walch SP (2003) Chem Phys Lett 374:496–500

    Article  CAS  Google Scholar 

  7. Evangelista FA, Paul A, Schaefer HF III (2004) J Phys Chem A 108:3565–3571

    Article  CAS  Google Scholar 

  8. Magdalena P, Antonio R, Jerzy L (2002) J Phys Chem A 106:11008–11016

    Article  Google Scholar 

  9. Mendham AP, Palmer RA, Potter BS, Dines TJ, Snowden MJ, Withnall R, Chowdhry BZ (2010) J Raman Spectrosc 41:288–302

    CAS  Google Scholar 

  10. Fricke H, Schwing K, Gerlach A, Unterberg C, Gerhards M (2010) Phys Chem Chem Phys 12:3511–3521

    Article  CAS  Google Scholar 

  11. Clifton E, Jan S, Martin V, Nick CP (2010) J Phys Chem A 114:5919–5927

    Article  Google Scholar 

  12. Rasmussen AM, Lind MC, Kim S, Schaefer HF III (2010) J Chem Theor Comput 6:930–939

    Article  CAS  Google Scholar 

  13. Pocker Y (2000) Cell Mol Life Sci 57:1008–1017

    Article  CAS  Google Scholar 

  14. Robertson EG, Simons JP (2001) Phys Chem Chem Phys 3:1–18

    Article  CAS  Google Scholar 

  15. Chalikian TV, Macgregor RB Jr (2007) Phys Life Rev 4:91–115

    Article  Google Scholar 

  16. Bowers MT, Wyttenbach H (2009) Chem Phys Lett 480:1–16

    Article  Google Scholar 

  17. Pèpe G, Guiliani G, Loustalet S, Halfon P (2002) Eur J Med Chem 37:865–872

    Article  Google Scholar 

  18. Klimovich PV, Mobley DL (2010) J Comput Aided Mol Des 24:307–316

    Article  CAS  Google Scholar 

  19. Ashbaugh HS, Kaler EW, Paulaitis ME (1999) J Am Chem Soc 121:9243–9244

    Article  CAS  Google Scholar 

  20. Chorny I, Dill KA, Jacobson MP (2005) J Phys Chem B 109:24056–24060

    Article  CAS  Google Scholar 

  21. Mobley DL, Barber AE, Fennell CJ, Dill KA (2008) J Phys Chem B 112:2405–2414

    Article  CAS  Google Scholar 

  22. Dybal J, Schmidt P, Kriz J, Kurkova D, Rodriguez-Cabello JC, Alonso M (2004) Macromol Symp 205:143–150

    Article  CAS  Google Scholar 

  23. Gaigeot MP, Kadri C, Ghomi M (2001) J Mol Struct 565:469–473

    Article  Google Scholar 

  24. Francesco T, Bencini A, Maurizio B, Luca DG, Giuseppe Z, Piercarlo F (2003) J Phys Chem A 107:1188–1196

    Article  Google Scholar 

  25. Vitorino GP, Barrera GD, Mazzieri MR, Binning RC Jr, Bacelo DE (2006) Chem Phys Lett 432:538–544

    Article  CAS  Google Scholar 

  26. Vyas N, Ojha AK (2010) J Mol Struct THEOCHEM 940:95–102

    Article  CAS  Google Scholar 

  27. Kim HT (2004) J Mol Struct THEOCHEM 673:121–126

    Article  CAS  Google Scholar 

  28. Li Q, Wang N, Yu Z (2007) J Mol Struct THEOCHEM 847:68–74

    Article  CAS  Google Scholar 

  29. Mobley DL, Bayly CI, Cooper MD, Dill KA (2009) J Phys Chem B 113:4533–4537

    Article  CAS  Google Scholar 

  30. Shi Z, Woody RW, Kallenbach NR (2002) Adv Protein Chem 62:163–240

    Article  CAS  Google Scholar 

  31. Carlson KL, Lowe SL, Hoffmann MR, Thomasson KA (2006) J Phys Chem A 110:1925–1933

    Article  CAS  Google Scholar 

  32. Che Y, Marshall GR (2006) Biopolymer 81:392–406

    Article  CAS  Google Scholar 

  33. Ahmed Z, Myshakina NS, Asher SA (2009) J Phys Chem B 113:11252–11259

    Article  CAS  Google Scholar 

  34. Zeng B, Shen T, Wu A, Cai S, Yu X, Xu X, Chen Z (2010) J Phys Chem A 114:5211–5216

    Article  CAS  Google Scholar 

  35. Hudaky I, Perczel A (2003) J Mol Struct THEOCHEM 630:135–140

    Article  CAS  Google Scholar 

  36. Kang YK (2004) J Mol Struct THEOCHEM 675:37–45

    Article  CAS  Google Scholar 

  37. Pfeifer GP, You YH, Besaratinia A (2005) Mutat Res 571:19–31

    Article  CAS  Google Scholar 

  38. Cadet J, Sage E, Douki T (2005) Mutat Res 571:3–17

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox, JE Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian Inc., Wallingford

  40. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  42. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  43. Mclean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  44. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  45. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  46. Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024–11031

    Article  CAS  Google Scholar 

  47. Cremer D, Pople JA (1975) J Am Chem Soc 97:1354–1358

    Article  CAS  Google Scholar 

  48. Abouaf R, Pommier J, Dunet H (2003) Chem Phys Lett 381:486–494

    Article  CAS  Google Scholar 

  49. Abouaf R, Pommier J, Dunet H, Quan P, Nam PC, Nguyen MT (2004) J Chem Phys 121:11668–11674

    Article  CAS  Google Scholar 

  50. Nguyen MT, Zhang R, Nam PC, Ceulemans A (2004) J Phys Chem A 108:6554–6561

    Article  CAS  Google Scholar 

  51. Daněček P, Kapitán J, Baumruk V, Bednárová L, Kopecký V Jr, Bouĭ P (2007) J Chem Phys 126:224513(1–13)

    Google Scholar 

  52. Swenson CA, Formanek R (1967) J Phys Chem 71:4073–4077

    Article  CAS  Google Scholar 

  53. Miller FA (1953) In: Gilman H (ed) Organic chemistry, vol 3. Wiley, New York

Download references

Acknowledgments

This work was financially supported from the start-up fund (No.08YKZ010) of the Weinan Teachers University of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Li.

Additional information

Xiao-Jun Li and Zhi-Jian Zhong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XJ., Zhong, ZJ. & Wu, HZ. DFT and MP2 investigations of L-proline and its hydrated complexes. J Mol Model 17, 2623–2630 (2011). https://doi.org/10.1007/s00894-011-0957-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-0957-z

Keywords

Navigation