Advertisement

Hydrogen-mediated Stone-Wales isomerization of dicyclopenta[de,mn]anthracene

  • 100 Accesses

  • 1 Citations

Abstract

The mechanism of transformation of two radicals (R1p and R1i) obtained by addition of a hydrogen atom to an external and internal carbon atom of dicyclopenta[de,mn]anthracene (P1) was investigated. Two pathways were revealed. The first mechanism is a one-step process, whereas the second mechanism includes two transition states and a cyclobutyl intermediate. The formation of R1p and R1i and the homolytic cleavage of the radicals obtained during the isomerization processes were also examined. In both pathways the addition of a hydrogen atom to the internal carbon significantly lowers the activation energy for hydrogen-mediated isomerization of P1 to acefluoranthene. This finding could be explained by the specific electronic structures of the transition states and intermediates participating in the isomerization processes.

Addition of hydrogen atom to an internal carbon lowers the activation barrier for the Stone-Wales rearrangement

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Otero-Lobato MJ, Kaats-Richters VEM, Havenith RWA, Jenneskens LW, Seinen W (2004) Di-epoxides of the three isomeric dicyclopenta-fused pyrenes: ultimate mutagenic active agents. Mutat Res 564:39–50

  2. 2.

    Wang JS, He X, Mulder PPJ, Boere BB, Cornelisse J, Lugtenburg J, Busby WF (1999) Comparative tumorigenicity of the cyclopenta-fused polycyclic aromatic hydrocarbons aceanthrylene, dihydroaceanthrylene and acephenanthrylene in preweanling CD-1and BLU: Ha mouse bioassays. Carcinogenesis 20:1137–1141

  3. 3.

    Howard JB, Longwell JP, Marr JA, Pope CJ, Busby WF Jr, Lafleur AL, Taghizadeh K (1995) Effects of PAH isomerizations on mutagenicity of combustion products. Combust Flame 101:262–270

  4. 4.

    Scott LT, Necula A (1997) Thermal migration of an ethynyl group from one benzene ring to another by reversible vinylidene C-H insertion. Tetrahedron Lett 38:1877–1880

  5. 5.

    Sarobe M, Jenneskens LW, Wesseling J, Snoeijer JD, Zwikker JW, Wiersum UE (1997) Thermal interconversions of the C16H10 cyclopenta-fused polycyclic aromatic hydrocarbons fluoranthene, acephenanthrylene, and aceanthrylene revisited. Liebigs Ann/Recueil 6:1207–1213

  6. 6.

    Sarobe M, Kwint HC, Fleer T, Havenith RWA, Jenneskens LW, Vlietstra EJ, van Lenthe JH, Wesseling J (1999) Flash vacuum thermolysis of acenaphtho[1, 2-a]acenaphthylene, fluoranthene, benzo[k]- and benzo[j]fluoranthene – homolytic scission of carbon-carbon single bonds of internally fused cyclopenta moieties at T ≥ 1100 °C. Eur J Org Chem 5:1191–1200

  7. 7.

    Necula A, Scott LT (2000) High temperature behavior of alternant and nonalternant polycyclic aromatic hydrocarbons. J Anal Appl Pyrol 54:65–87

  8. 8.

    Jenneskens LW, Sarobe M, Zwikker JW (1996) Thermal generation and (inter)conversion of (multi) cyclopenta-fused polycyclic aromatic hydrocarbons. Pure Appl Chem 68:219–224

  9. 9.

    Scott LT, Roelofs NH (1987) Benzene ring contractions at high temperatures. Evidence from the thermal interconversions of aceanthrylene, acephenanthrylene, and fluoranthene. J Am Chem Soc 109:5461–5465

  10. 10.

    Sarobe M, Jenneskens LW, Wesseling J, Wiersum UE (1997) High temperature gas phase syntheses of C20H12 cyclopenta-fused polycyclic aromatic hydrocarbons: benz[l]-acephenanthrylene and benz[j]acephenanthrylene and their selective rearrangement to benzo[j]fluoranthene. J Chem Soc Perkin Trans 2(4):703–708

  11. 11.

    Marsh ND, Wornat MJ (2004) Polycyclic aromatic hydrocarbons with five-membered rings: distributions within isomer families in experiments and computed equilibria. J Phys Chem A 108:5399–5407

  12. 12.

    Scott LT, Roelofs NH (1988) Benzenoid ring contractions in the thermal automerization of acenaphthylene. Tetrahedron Lett 29:6857–6860

  13. 13.

    Gutman I, Furtula B (2008) Cyclic conjugation in pyracylene. Polyc Arom Comp 28:136–142

  14. 14.

    Gutman I, Đurđević J (2008) Fluoranthene and its congeners - a graph theoretical study MATCH. Commun Math Comput Chem 60:659–670

  15. 15.

    Cioslowski J, Schimeczek M, Piskorz P, Moncrieff D (1999) Thermal rearrangement of ethynylarenes to cyclopentafused polycyclic aromatic hydrocarbons: an electronic structure study. J Am Chem Soc 121:3773–3778

  16. 16.

    Violi A, Sarofim AF, Truong TN (2001) Quantum mechanical study of molecular weight growth process by combination of aromatic molecules. Combust Flame 126:1506–1515

  17. 17.

    Tsefrikas VM, Scott LT (2006) Geodesic polyarenes by flash vacuum pyrolysis. Chem Rev 106:4868–4884

  18. 18.

    Marković S, Stanković S, Radenković S, Gutman I (2008) Electronic structure study of thermal intraconversions of some dicyclopenta-fused polycyclic aromatic compounds. J Chem Inf Model 48:1984–1989

  19. 19.

    Stanković S, Marković S, Radenković S, Gutman I (2009) Formation and isomerization of dicyclopenta[de, mn]anthracene. Electronic structure study. J Mol Model 15:953–958

  20. 20.

    Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128:501–503

  21. 21.

    Murry RL, Strout DL, Odon GK, Scuseria GE (1993) Role of sp3 carbon and 7-membered rings in fullerene annealing and fragmentation. Nature 366:665–667

  22. 22.

    Balaban AT, Schmalz TG, Zhu H, Klein DJ (1996) Generalizations of the Stone-Wales rearrangement for cage compounds, including fullerenes. J Mol Struct: THEOCHEM 363:291–301

  23. 23.

    Scott LT (1996) Fragments of fullerenes: novel syntheses, structures and reactions. Pure Appl Chem 68:291–300

  24. 24.

    Eggen BR, Heggie MI, Jungnickel G, Latham CD, Jones R, Briddon PR (1996) Autocatalysis during fullerene growth. Science 272:87–89

  25. 25.

    Slanina Z, Zhao X, Uhlík F, Ozawa M, Osawa E (2000) Computational modeling of the elemental catalysis in the Stone-Wales fullerene rearrangements. J Organomet Chem 599:57–61

  26. 26.

    Alder RW, Harvey JN (2004) Radical-promoted Stone-Wales rearrangements. J Am Chem Soc 126:2490–2494

  27. 27.

    Slanina Z, Zhao X, Uhlík F, Adamowicz L, Lee S-L (2004) Computations of the catalytic effects in the Stone-Wales fullerene isomerizations: N and CN agents. Int J Quantum Chem 99:634–639

  28. 28.

    Nimlos MR, Filley J, McKinnon JT (2005) Hydrogen atom mediated Stone-Wales rearrangement of pyracyclene: a model for annealing in fullerene formation. J Phys Chem 109:9896–9903

  29. 29.

    Marković S, Stanković S, Radenković S, Gutman I (2009) Thermal isomerization in cyclopenta[fg]aceanthrylene. Monats Chem 140:153–156

  30. 30.

    Richter T, Howard JB (2000) Formation of polycyclic aromatic hydrocarbons and their growth to soot – a review of chemical reaction pathways. Prog Energy Combust Sci 26:565–608

  31. 31.

    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

  32. 32.

    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

  33. 33.

    Becke AD (1993) Density-functional thermochemistry. II. The role of exact exchange. J Chem Phys 98:5648–5652

  34. 34.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick AD, Rabuck KD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03, Revision E.01-SMP. Gaussian Inc, Pittsburgh, PA

  35. 35.

    Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

  36. 36.

    Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

  37. 37.

    Glendening D, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F, Copyright 1996–2001 by Board of Regents of the University of Wisconsin System

  38. 38.

    Zhao Y, Truhlar DG (2004) Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J Phys Chem A 108:6908–6918

Download references

Acknowledgments

This work is supported by the Ministry of science of Serbia, projects No 144015G and 142025.

Author information

Correspondence to Svetlana Marković.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MPG 3280 kb)

ESM 1

(DOC 5474 kb)

ESM 2

(DOC 94 kb)

ESM 3

(MPG 3280 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stanković, S., Marković, S., Gutman, I. et al. Hydrogen-mediated Stone-Wales isomerization of dicyclopenta[de,mn]anthracene. J Mol Model 16, 1519–1527 (2010). https://doi.org/10.1007/s00894-010-0669-9

Download citation

Keywords

  • Activation energy lowering
  • Density functional theory
  • Electronic structure
  • Radical mechanism