Advertisement

Molecular dynamics simulation of hydrated Nafion with a reactive force field for water

Abstract

We apply a newly parameterized central force field to highlight the problem of proton transport in fuel cell membranes and show that central force fields are potential candidates to describe chemical reactions on a classical level. After a short sketch of the parameterization of the force field, we validate the obtained force field for several properties of water. The experimental and simulated radial distribution functions are reproduced very accurately as a consequence of the applied parameterization procedure. Further properties, geometry, coordination, diffusion coefficient and density, are simulated adequately for our purposes. Afterwards we use the new force field for the molecular dynamics simulation of a swollen polyelectrolyte membrane similar to the widespread Nafion 117. We investigate the equilibrated structures, proton transfer, lifetimes of hydronium ions, the diffusion coefficients, and the conductivity in dependence of water content. In a short movie we demonstrate the ability of the obtained force field to describe the bond breaking/formation, and conclude that this force field can be considered as a kind of a reactive force field. The investigations of the lifetimes of hydronium ions give us the information about the kinetics of the proton transfer in a membrane with low water content. We found the evidence for the second order reaction. Finally, we demonstrate that the model is simple enough to handle the large systems sufficient to calculate the conductivity from molecular dynamics simulations. The detailed analysis of the conductivity reveals the importance of the collective moving of hydronium ions in membrane, which might give an interesting encouragement for further development of membranes. Figure: The structure of water in one pore of the highly hydrated Nafion membranes.

The structure of water in one of pore of the highly hydrated Nafion membrane

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) Chem Rev 104:4637–4678

  2. 2.

    Tuckerman M, Laasonen K, Sprik M, Parrinello MJ (1995) Chem Phys 103:150–161

  3. 3.

    Schmitt U, Voth G (1999) J Chem Phys 111:9361–9381

  4. 4.

    Walbran S, Kornyshev A (2001) J Chem Phys 114:10039–10048

  5. 5.

    Day T, Soudackov A, Cuma M, Schmitt U, Voth G (2002) J Chem Phys 117:5839–5849

  6. 6.

    Spohr E, Commer P, Kornyshev A (2002) J Phys Chem B106:10560–10569

  7. 7.

    Petersen M, Wang F, Blake N, Metiu H, Voth G (2005) J Phys Chem B 109:3727–3730

  8. 8.

    van Duin A, Dasgupta S, Lorant F, Goddard III W (2001) J Phys Chem A 105:9396–9409

  9. 9.

    Yin K, Xia Q, Xu D, Chen C (2006) Comput Chem Eng 30:1346–1353

  10. 10.

    Lyubartsev A, Laaksonen A (2000) Chem Phys Lett 325:15–21

  11. 11.

    Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund LA, Hirsch TK, Ojamae L, Glatzel P et al. (2004) Science 304:995

  12. 12.

    Soper AK (2000) Chem Phys 258:121–137

  13. 13.

    Hofmann D, Apostolakis J (2003) J Mol Struc:Theo Chem 647:17–39

  14. 14.

    Lemberg H, Stillinger FH (1975) J Chem Phys 62:1677–1690

  15. 15.

    Arthur J, Haymet ADJ (1998) Fluid Phase Equilibria 150:91–96

  16. 16.

    Bresme F (2001) J Chem Phys 115:7564–7574

  17. 17.

    Soper AK (1996) Chem Phys 202:295–306

  18. 18.

    Lyubartsev A, Laaksonen A (1995) Phys Rev E52:3730–3737

  19. 19.

    Bernal J, Fowler RH (1933) J Chem Phys 1:515–548

  20. 20.

    Elliot J, Hanna S, Elliot A, Cooley G (1999) Phys Chem Chem Phys 1:4855–4863

  21. 21.

    Hofmann D, Kuleshova L, D’Aguano B (2007) Phys Chem Let 448:138–143

  22. 22.

    Matsuoka O, Clementi E, Yoshimine M (1976) J Chem Phys 64:1351–1361

  23. 23.

    Bursulaya B, Kim H (1998) J Chem Phys 109:4911–4919

  24. 24.

    Guillot B (2002) J Mol Liquids 101:219–260

  25. 25.

    Watanabe K, Klein M (1989) Chem Phys 131:157–167

  26. 26.

    Berendsen H, Postma J, van Gunsteren W, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullmann, Dodrecht (eds) pp 331–342

  27. 27.

    Wallqvist A, Astrand P-O (1995) J Chem Phys 102:6559–6565

  28. 28.

    Silvestrelli P, Parrinello M (1999) J Chem Phys 111:3572–3580

  29. 29.

    Mayo SL, Olafson BD, Goddard III WA (1990) J Phys Chem 94:8897–8909

  30. 30.

    Gebel G (2000) Polymer 41:5829–5838

  31. 31.

    Wescott J, Qi Y, Subramanian L, Capehart T (2006) J Chem Phys 124:134702–134716

  32. 32.

    Boero M, Ikeshoji T, Terakura K (2005) Chem Phys Chem 6: 1775–1779

  33. 33.

    Wedler G (1982) Lehrbuch der physikalischen Chemie. In Verlag Chemie; Chapter Die Bestimmung der Reaktionsordnung, pp 161–165

  34. 34.

    Moilanen DE, Piletic IR, Fayer MD (2006) J Phys Chem A110:9084–9088

  35. 35.

    Lowry TH, Richardson KS (1981) Mechanism and theory in organic chemistry. In: second ed.; Haper & Row, Publishers:; Chapter Kinetics and Mechanism, pp 174–188

  36. 36.

    Lonegran M, Shriver D, Ratner M (1995) Electrochimica Acta 40:2041–2048

  37. 37.

    Zawodzinski T, Derouin C, Radzinski S, Sherman R, Smith V, Springer, T, Gottesfeld A (1993) J Electrochem Soc 140:1041–1047

  38. 38.

    Spaeth M, Kreuer K, Maier J, Cramer C (1999) J Solid State Chem 148:169–177

Download references

Acknowledgments

The authors would like to thank for financial support the Sardinia Region and the Italian Ministry of Research (MIUR), NUME project (http://www.progetto-nume.it/). The authors are also indebted to Lorenzo Pisani for many useful discussions.

Author information

Correspondence to Detlef W. M. Hofmann.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material (the movie of molecular dynamics in hydrated Nafion membrane including one proton transfer) is available (AVI 13.4 mb)

Video 1

Supplementary material (the movie of molecular dynamics in hydrated Nafion membrane including one proton transfer) is available (AVI 13.4 mb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hofmann, D.W.M., Kuleshova, L. & D’Aguanno, B. Molecular dynamics simulation of hydrated Nafion with a reactive force field for water. J Mol Model 14, 225–235 (2008) doi:10.1007/s00894-007-0265-9

Download citation

Keywords

  • Molecular dynamics
  • Nafion
  • Radial distribution function
  • Reactive force field
  • Water