Advertisement

An MEI-based standard encoding for hierarchical music analyses

  • David Rizo
  • Alan Marsden
Article

Abstract

We propose a standard representation for hierarchical musical analyses as an extension to the Music Encoding Initiative (MEI) representation for music. Analyses of music need to be represented in digital form for the same reasons as music: preservation, sharing of data, data linking, and digital processing. Systems exist for representing sequential information, but many music analyses are hierarchical, whether represented explicitly in trees or graphs or not. Features of MEI allow the representation of an analysis to be directly associated with the elements of the music analyzed. MEI’s basis in TEI (Text Encoding Initiative), allows us to design a scheme which reuses some of the elements of TEI for the representation of trees and graphs. In order to capture both the information specific to a type of music analysis and the underlying form of an analysis as a tree or graph, we propose related “semantic” encodings, which capture the detailed information, and generic “non-semantic” encodings which expose the tree or graph structure. We illustrate this with examples of representations of a range of different kinds of analysis.

Keywords

Encodings Standards Music analysis Music representations 

Notes

Acknowledgements

We would like to thank Eleanor Selfridge-Field, Don Byrd, Tom Collins, and Phillip Kirlin for contributions during the MEC 2016 and DLfM 2016 conferences which have informed this work, and to thank Ichiro Fujinaga and Perry Roland for their encouragement to continue it.

References

  1. 1.
    Bernabeu, J.F., Calera-Rubio, J., Iñesta, J.M., Rizo, D.: Melodic identification using probabilistic tree automata. J. New Music Res. 40(2), 93–103 (2011).  https://doi.org/10.1080/09298215.2011.573560 CrossRefGoogle Scholar
  2. 2.
    Bod, R.: A general parsing model for music and language. In: Music and Artificial Intelligence, pp. 77–90 (2002)Google Scholar
  3. 3.
    Burgoyne, J.A., Wild, J., Fujinaga, I.: An expert ground truth set for audio chord recognition and music analysis. In: Proceedings of the 12th International Society for Music Information Retrieval Conference, Miami, Florida, USA, pp. 633–638 (2011)Google Scholar
  4. 4.
    Fazekas, G., Raimond, Y., Jacobson, K., Sandler, M.: An overview of semantic web activities in the OMRAS2 project. J. New Music Res. 39(4), 295–311 (2010).  https://doi.org/10.1080/09298215.2010.536555 CrossRefGoogle Scholar
  5. 5.
    Gilbert, É., Conklin, D.: A probabilistic context-free grammar for melodic reduction. In: International Workshop on Artificial Intelligence and Music at IJCAI-07. Twentieth International Joint Conference on Artificial Intelligence, Hyderabad, India (2007)Google Scholar
  6. 6.
    Gjerdingen, R.O.: A Classic Turn of Phrase: Music and the Psychology of Convention. University of Pennsylvania Press, Philadelphia (1988)Google Scholar
  7. 7.
    Good, M., Actor, G.: Using MusicXML for file interchange. In: International Conference on Web Delivering of Music, p. 153 (2003).  https://doi.org/10.1109/WDM.2003.1233890
  8. 8.
    Hamanaka, M., Keiji, H., Satoshi, T.: Implementing “a generative theory of tonal music”. J. New Music Res. 35(4), 249–277 (2006)CrossRefGoogle Scholar
  9. 9.
    Hamanaka, M., Hirata, K., Tojo, S.: Musical structural analysis database based on GTTM. In: Proceedings of the 15th International Society for Music Information Retrieval Conference, ISMIR 2014, Taipei, Taiwan, October 27–31, pp. 325–330 (2014)Google Scholar
  10. 10.
    Hankinson, A., Roland, P., Fujinaga, I.: The music encoding initiative as a document-encoding framework. In: ISMIR (2011)Google Scholar
  11. 11.
    Harte, C., Sandler, M., Abdallah, S., Gómez, E.: Symbolic representation of musical chords: a proposed syntax for text annotations, pp. 66–71. London (2005)Google Scholar
  12. 12.
    Högberg, J.: Wind in the willows: generating music by means of tree transducers. In: CIAA, pp. 153–162 (2005)Google Scholar
  13. 13.
    Humphrey, E.J., Salamon, J., Nieto, O., Forsyth, J., Bittner, R.M., Bello, J.P.: JAMS: a JSON annotated music specification for reproducible MIR research. In: Proceedings of the 15th International Society for Music Information Retrieval Conference, ISMIR 2014, Taipei, Taiwan, October 27–31, pp. 591–596 (2014)Google Scholar
  14. 14.
    Ide, N.M., Sperberg-McQueen, C.M.: The TEI: history, goals, and future. Comput. Humanit. 29(1), 5–15 (1995)CrossRefGoogle Scholar
  15. 15.
    Jacquemard, F., Donat-Bouillud, P., Bresson, J.: A structural theory of rhythm notation based on tree representations and term rewriting. In: Advances in Artificial Intelligence, pp. 3–15. Springer, Cham (2015)Google Scholar
  16. 16.
    Kirlin, P.B.: A data set for computational studies of Schenkerian analysis. In: Proceedings of the 15th International Society for Music Information Retrieval Conference, ISMIR 2014, Taipei, Taiwan, October 27–31, pp. 213–218 (2014a)Google Scholar
  17. 17.
    Kirlin, P.B.: A probabilistic model of hierarchical music analysis. Ph.D. thesis, University of Massachusetts Amhers, MA (2014b)Google Scholar
  18. 18.
    Lee, C.S.: The rhythmic interpretation of simple musical sequences: towards a perceptual model. In: West, R., Howell, P., Cross, I. (eds.) Musical Structure and Cognition, pp. 53–69. Academic Press, London (1985)Google Scholar
  19. 19.
    Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music. MIT Press, Cambridge (1983)Google Scholar
  20. 20.
    Linster, C.: On analyzing and representing musical rhythm. In: Balaban, M., Ebcioğlu, K., Laske, O. (eds.) Understanding Music with AI: Perspectives on Music Cognition, pp. 414–427. AAAI Press, Menlo Park (1992)Google Scholar
  21. 21.
    Lisena, P., Todorov, K., Cecconi, C., Leresche, F., Canno, I., Puyrenier, F., Voisin, M., Le Meur, T., Troncy, R.: Controlled vocabularies for music metadata. In: Proceedings of the 19th ISMIR Conference, Paris, France, September 23–27, pp. 424–430 (2018)Google Scholar
  22. 22.
    Marsden, A.: Representing melodic patterns as networks of elaborations. Comput. Humanit. 35(1), 37–54 (2001)CrossRefGoogle Scholar
  23. 23.
    Marsden, A.: Generative structural representation of tonal music. J. New Music Res. 34(4), 409–428 (2005).  https://doi.org/10.1080/09298210600578295 CrossRefGoogle Scholar
  24. 24.
    Marsden, A.: Schenkerian analysis by computer: a proof of concept. J. New Music Res. 39(3), 269–289 (2010).  https://doi.org/10.1080/09298215.2010.503898 CrossRefGoogle Scholar
  25. 25.
    Nattiez, J.-J.: Fondements d’une sémiologie de la musique. Union Générale d’Éditions, Paris (1975)Google Scholar
  26. 26.
    Pinto, A., Tagliolato, P.: A generalized graph-spectral approach to melodic modeling and retrieval. In: MIR ’08, Proceeding of the 1st ACM International Conference on Multimedia Information Retrieval, pp. 89–96. ACM, New York (2008)Google Scholar
  27. 27.
    Rashid, S., McGuinness, D.L., De Roure, D.: A music theory ontology. In: In International Workshop on Semantic Applications for Audio and Music-ISWC. Monterey (2018)Google Scholar
  28. 28.
    Rizo, D.: Symbolic music comparison with tree data structures. Ph.D. thesis, Universidad de Alicante (2010)Google Scholar
  29. 29.
    Rizo, D., Marsden, A.: A standard format proposal for hierarchical analyses and representations. In: Proceedings of the 3rd International workshop on Digital Libraries for Musicology, pp. 25–32. ACM Press, New York (2016)Google Scholar
  30. 30.
    Sapp, C.S.: Computational methods for the analysis of musical structure. Ph.D. thesis, Stanford University (2011)Google Scholar
  31. 31.
    Schenker, H.: Free Composition (Der Freie Satz). Longman, London (1979) (1935)Google Scholar
  32. 32.
    Selfridge-Field, E.: Beyond MIDI: The Handbook of Musical Codes. MIT Press, Cambridge (1997)Google Scholar
  33. 33.
    Uboldi, G., Caviglia, G.: Information visualizations and interfaces in the humanities. In: David, B. (ed.) New Challenges for Data Design, pp. 207–218. Springer, London (2014)Google Scholar
  34. 34.
    Weigl, D.M., Lewis, D., Crawford, T., Knopke, I., Page, K.R.: On providing semantic alignment and unified access to music library metadata. Int. J. Digit. Libr. (2017).  https://doi.org/10.1007/s00799-017-0223-9
  35. 35.
    Yust, J.: The geometry of melodic, harmonic, and metrical hierarchy. In: Mathematics and Computation in Music, pp. 180–192. Springer, Berlin (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Software and Computing SystemsUniversity of AlicanteAlicanteSpain
  2. 2.Instituto Superior de Enseñanzas Artísticas de la Comunidad ValencianaValenciaSpain
  3. 3.Lancaster Institute for the Contemporary ArtsLancaster UniversityLancasterUK

Personalised recommendations