Membranous overexpression of S100A10 is associated with a high-grade cellular status of breast carcinoma

  • Kazumori AraiEmail author
  • Tomohiro Iwasaki
  • Akihiro Sonoda
  • Akikazu Endo
Original Paper


S100A10 promotes tumor invasion in various cancers. Although genetic studies on S100A10 in breast carcinoma (BC) have been used for molecular biological classification, immunohistochemical studies are lacking. We aimed to identify the correlation between S100A10 expression in BC and various pathological parameters, including morphological features to determine histological grade (HG). Immunostained serial paraffin-embedded tissue sections from 176 cases of resected BC or normal mammary ducts (controls) were assessed for the membrane expression of S100A10. Of the 176 cases, 125 conventional infiltrating ductal carcinomas were chosen, comprising 67 (53.6%) S100A10-positive tumors, whereas normal mammary ducts were S100A10-negative. S100A10 immunoreactivity in ductal carcinoma in situ (n = 51) was similar to that of invasive carcinoma. The distinct membrane-immunopositivity was correlated with high HG, severe nuclear pleomorphism, frequent mitotic counts, high Ki-67 labeling index, HER2/neu overexpression, and low estrogen receptor status (P < 0.05), but not with tubular formation, pT categories, node metastasis, vessel permeation, and pStage. Membrane overexpression of S100A10 in BC correlates with the high-grade morphological and molecular status of the carcinoma cell rather than stromal invasion and architectural deviation. Evidence points to the use of S100A10 as a biomarker representing a high-grade cellular status of BC.


S100A10 Breast carcinoma Histological grade Cell proliferation Nuclear pleomorphism Immunohistochemistry 



The authors would like to thank Enago ( for the English language review.


This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Akinyemiju TF, Al Lami FH, Alam T, Alizadeh-Navaei R, Allen C, Alsharif U, Alvis-Guzman N, Amini E, Anderson B, Aremu , Artaman A, Asgedom SW, Assadi R, Atey TM, Avila-Burgos L, Awasthi A, Ba Saleem HO, Barac A, Bennett JR, Bensenor IM, Bhakta N, Brenner H, Cahuana-Hurtado L, Castañeda-Orjuela CA, Catalá-López F, Choi JJ, Christopher DJ, Chung SC, Curado MP, Dandona L, Dandona R, das Neves J, Dey S, Dharmaratne SD, Doku DT, Driscoll TR, Dubey M, Ebrahimi H, Edessa D, El-Khatib Z, Endries AY, Fischer F, Force LM, Foreman KJ, Gebrehiwot SW, Gopalani SV, Grosso G, Gupta R, Gyawali B, Hamadeh RR, Hamidi S, Harvey J, Hassen HY, Hay RJ,, Hay SI,, Heibati B, Hiluf MK, Horita N, Hosgood HD, Ilesanmi OS, Innos K, Islami F, Jakovljevic MB, Johnson SC, Jonas JB, Kasaeian A, Kassa TD, Khader YS, Khan EA, Khan G, Khang YH, Khosravi MH, Khubchandani J, Kopec JA, Kumar GA, Kutz M, Lad DP, Lafranconi A, Lan Q, Legesse Y, Leigh J, Linn S, Lunevicius R, Majeed A, Malekzadeh R, Malta DC, Mantovani LG, McMahon BJ, Meier T, Melaku YA, Melku M, Memiah P, Mendoza W, Meretoja TJ, Mezgebe HB, Miller TR, Mohammed S, Mokdad AH, Moosazadeh M, Moraga P, Mousavi SM, Nangia V, Nguyen CT, Nong VM, Ogbo FA, Olagunju AT, Pa M, Park EK, Patel T, Pereira DM, Pishgar F, Postma MJ, Pourmalek F, Qorbani M, Rafay A, Rawaf S, Rawaf DL, Roshandel G, Safiri S, Salimzadeh H, Sanabria JR, Santric Milicevic MM, Sartorius B, Satpathy M, Sepanlou SG, Shackelford KA, Shaikh MA, Sharif-Alhoseini M, She J, Shin MJ, Shiue I, Shrime MG, Sinke AH, Sisay M4, Sligar A, Sufiyan MB, Sykes BL, Tabarés-Seisdedos R, Tessema GA, Topor-Madry R, Tran TT, Tran BX, Ukwaja KN, Vlassov VV, Vollset SE, Weiderpass E, Williams HC, Yimer NB, Yonemoto N, Younis MZ, Murray CJL, Naghavi M. (2018) Global regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol 4:1553–1568Google Scholar
  2. 2.
    Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, Vijver MJ (eds) (2012) World Health Organization Classification of Tumours: WHO classification of tumours of the breast, 4th edn. International Agency for Research on Cancer Press, LyonGoogle Scholar
  3. 3.
    Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, Fox SB, Ishihara S, Jacquemier J, Lakhani SR, Palacios J, Richardson AL, Schnitt SJ, Schmitt FC, Tan PH, Tse GM, Badve S, Ellis LO (2010) Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res 12:1–12CrossRefGoogle Scholar
  4. 4.
    Schwartz AM, Henson DE, Chen D, Rajamarthandan S (2014) Histologic grade remains a prognostic factor for breast cancer regardless of the number of positive lymph nodes and tumor size. Arch Pathol Lab Med 138:1048–1052CrossRefGoogle Scholar
  5. 5.
    Wolberg WH, Nick Street W, Mangasarian OL (1999) Importance of nuclear morphology in breast cancer prognosis. Clin Cancer Res 5:3542–3548PubMedGoogle Scholar
  6. 6.
    Genestie C, Zafrani B, Asselain B, Fourquet A, Rozan S, Validire P, Vincent-Salomon A, Sastre-Garau X (1998) Comparison of the prognostic value of Scarff-Bloom-Richardson and Nottingham histological grades in a series of 825 cases of breast cancer: major importance of the mitotic count as a component of both grading systems. Anticancer Res 18:571–576PubMedGoogle Scholar
  7. 7.
    Curigliano G, Burstein HJ, Winer EP, Gnant M, Dubsky P, Loibl S, Colleoni M, Regan MM, Piccart-Gebhart M, Senn HJ, Thürlimann B, on behalf of the panel members of the St. Gallen international expert consensus conference on the primary therapy of early breast cancer 2017 (2017) De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen international expert consensus conference on the primary therapy of early breast cancer 2017. Ann Oncol 28:1700–1712CrossRefGoogle Scholar
  8. 8.
    Ehinger A, Malmström P, Bendahl PO, Elston CW, Falck AK, Forsare C, Grabau D, Rydén L, Stål O, Fernö M (2017) Histological grade provides significant prognostic information in addiction to breast cancer subtypes defined according to St Gallen 2013. Acta Oncol 56:68–74CrossRefGoogle Scholar
  9. 9.
    Liao HY, Zhang WW, Sun JY, Li FY, He ZY, Wu SG (2018) The clinicopathological features and survival out comes of different histological subtypes in triple-negative breast cancer. J Cancer 9:296–303CrossRefGoogle Scholar
  10. 10.
    Bresnick AR, Weber DJ, Zimmer DB (2015) S100 proteins in cancer. Nat Rev Cancer 15:96–109CrossRefGoogle Scholar
  11. 11.
    Noye TM, Lokman NA, Oehler MK, Ricciardelli C (2018) S100A10 and cancer hallmarks: Structure, functions, and its emerging role in ovarian cancer. Int J Mol Sci 19:1–16CrossRefGoogle Scholar
  12. 12.
    Kumari S, Malla R (2015) New insight on the role plasminogen receptor in cancer progression. Cancer Growth Metastasis 8:35–42CrossRefGoogle Scholar
  13. 13.
    Tantyo NA, Karyadi AS, Rasman SZ, Salim MRG, Devina A, Sumarpo A (2019) The prognostic value of S100A10 expression in cancer (Review). Oncol Lett 17:1417–1424PubMedGoogle Scholar
  14. 14.
    Zhang S, Wang Z, Liu W, Lei R, Shan J, Li L, Wang X (2017) Distinct prognostic values of S100 mRNA expression in breast cancer. Sci Rep 7:39786CrossRefGoogle Scholar
  15. 15.
    Johansson HJ, Sanchez BC, Forshed J, Stål O, Fohlin H, Lewensohn R, Hall P, Bergh J, Lehtiö J, Linderholm BK (2015) Proteomics profiling identify CAPS as a potential predictive marker of tamoxifen resistance in estrogen receptor positive breast cancer. Clin Proteom 12:1–8CrossRefGoogle Scholar
  16. 16.
    Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM, Zhou YX, Varnholt H, Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG, Sgroi DC (2003) Gene expression profiles of human breast cancer progression. PNAS 100:5974–5979CrossRefGoogle Scholar
  17. 17.
    Domoto T, Miyama Y, Suzuki H, Teratani T, Arai K, Sugiyama T, Takayama T, Mugiya S, Ozono S, Nozawa R (2006) Evaluation of S100A10, annexin II and B-FABP expression as markers for renal cell carcinoma. Cancer Sci 98:77–82CrossRefGoogle Scholar
  18. 18.
    Brierley JD, Gospodarowicz MK, Wittekind C (eds) (2017) Union for International Cancer Control (UICC): TNM classification of malignant tumors, 8th edn. Oxford Press, New JerseyGoogle Scholar
  19. 19.
    Allred DC (2010) Ductal carcinoma in situ: terminology, classification, and natural history. J Nat Cancer Inst Monogr 41:134–138CrossRefGoogle Scholar
  20. 20.
    Arai K, Teratani T, Kuruto-Niwa R, Yamada T, Nozawa R (2004) S100A9 expression in invasive ductal carcinoma of the breast: S100A9 expression in adenocarcinoma is closely associated with poor tumour differentiation. Eur J Cancer 40:1179–1187CrossRefGoogle Scholar
  21. 21.
    Inwald EC, Klinkhammer-Schalke M, Hofstädter F, Zeman F, Koller M, Gerstenhauer M, Ortmann O (2013) Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat 139:539–552CrossRefGoogle Scholar
  22. 22.
    Wang SC, Zhang L, Hortobagyi GN, Hung MC (2001) Targeting HER2: recent developments and future directions for breast cancer patients. Semin Oncol 28:21–29CrossRefGoogle Scholar
  23. 23.
    De Abreu FB, Schwartz GN, Wells WA, Tsongalis GJ (2014) Personalized therapy for breast cancer. Clin Genet 86:62–67CrossRefGoogle Scholar
  24. 24.
    Early breast cancer trialists’ collaborative group (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717CrossRefGoogle Scholar
  25. 25.
    Prabhu JS, Korlimarla A, Desai K, Alexander A, Raghavan R, Anupama CE, Dendukuri N, Manjunath S, Correa M, Raman N, Kalamdani A, Prasad MSN, Gopinath KS, Srinath BS, Sridhar TS (2014) A majority of low (1–10%) ER positive breast cancers behave like hormone receptor negative tumors. J Cancer 5:156–165CrossRefGoogle Scholar
  26. 26.
    Cancemi P, Buttacavoli M, Cara GD, Albanese NN, Bivona S, Pucci-Minafra I, Feo S (2018) A multiomics analysis of S100 protein family in breast cancer. Oncotarget 9:29064–29081CrossRefGoogle Scholar
  27. 27.
    Ito Y, Arai K, Nozawa R, Yoshida H, Higashiyama T, Takamura Y, Miya A, Kobayashi K, Kuma K, Miyauchi A (2007) S100A10 expression in thyroid neoplasms originating from the follicular epithelium: contribution to the aggressive characteristic of anaplastic carcinoma. Anticancer Res 27:2679–2684PubMedGoogle Scholar
  28. 28.
    Katono K, Sato Y, Jiang SX, Kobayashi M, Saito K, Nagashio R, Ryuge S, Satoh Y, Saegusa M, Masuda N (2016) Clinicopathological significance of S100A10 expression in lung adenocarcinomas. Asian Pac J Cancer Prevent 17:289–294CrossRefGoogle Scholar
  29. 29.
    Kallioniemi OP, Holli K, Visakorpi T, Koivula T, Helin HH, Isola JJ (1991) Association of c-erbB-2 protein over-expression with high rate of cell proliferation, increased risk of visceral metastasis and poor long-term survival in breast cancer. Int J Cancer 49:650–655CrossRefGoogle Scholar
  30. 30.
    Fadare O, Tavassoli FA (2008) Clinical and pathologic aspects of basal-like breast cancers. Nat Clin Pract Oncol 5:149–159CrossRefGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2019

Authors and Affiliations

  • Kazumori Arai
    • 1
    Email author
  • Tomohiro Iwasaki
    • 1
  • Akihiro Sonoda
    • 2
  • Akikazu Endo
    • 3
  1. 1.Department of PathologyShizuoka General HospitalShizuokaJapan
  2. 2.Department of Clinical ResearchShizuoka General HospitalShizuokaJapan
  3. 3.Department of Diagnostic PathologyHamamatsu University HospitalHamamatsuJapan

Personalised recommendations