Clinical application of photodynamic medicine technology using light-emitting fluorescence imaging based on a specialized luminous source

  • Tsutomu Namikawa
  • Kazune Fujisawa
  • Eri Munekage
  • Jun Iwabu
  • Sunao Uemura
  • Shigehiro Tsujii
  • Hiromichi Maeda
  • Hiroyuki Kitagawa
  • Hideo Fukuhara
  • Keiji Inoue
  • Takayuki Sato
  • Michiya Kobayashi
  • Kazuhiro Hanazaki
Review

Abstract

The natural amino acid 5-aminolevulinic acid (ALA) is a protoporphyrin IX (PpIX) precursor and a new-generation photosensitive substance that accumulates specifically in cancer cells. When indocyanine green (ICG) is irradiated with near-infrared (NIR) light, it shifts to a higher energy state and emits infrared light with a longer wavelength than the irradiated NIR light. Photodynamic diagnosis (PDD) using ALA and ICG-based NIR fluorescence imaging has emerged as a new diagnostic technique. Specifically, in laparoscopic examinations for serosa-invading advanced gastric cancer, peritoneal metastases could be detected by ALA-PDD, but not by conventional visible-light imaging. The HyperEye Medical System (HEMS) can visualize ICG fluorescence as color images simultaneously projected with visible light in real time. This ICG fluorescence method is widely applicable, including for intraoperative identification of sentinel lymph nodes, visualization of blood vessels in organ resection, and blood flow evaluation during surgery. Fluorescence navigation by ALA-PDD and NIR using ICG imaging provides good visualization and detection of the target lesions that is not possible with the naked eye. We propose that this technique should be used in fundamental research on the relationship among cellular dynamics, metabolic enzymes, and tumor tissues, and to evaluate clinical efficacy and safety in multicenter cooperative clinical trials.

Keywords

Photodynamic diagnosis Photodynamic therapy Near-infrared ray Gastric cancer 5-Aminolevulinic acid Indocyanine green 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Namikawa T, Sato T, Hanazaki K (2015) Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green. Surg Today 45:1467–1474CrossRefPubMedGoogle Scholar
  2. 2.
    Namikawa T, Yatabe T, Inoue K, Shuin T, Hanazaki K (2015) Clinical applications of 5-aminolevulinic acid-mediated fluorescence for gastric cancer. World J Gastroenterol 21:8769–8775CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Inoue K, Fukuhara H, Shimamoto T, Kamada M, Iiyama T, Miyamura M, Kurabayashi A, Furihata M, Tanimura M, Watanabe H, Shuin T (2012) Comparison between intravesical and oral administration of 5-aminolevulinic acid in the clinical benefit of photodynamic diagnosis for nonmuscle invasive bladder cancer. Cancer 118:1062–1074CrossRefPubMedGoogle Scholar
  4. 4.
    Namikawa T, Inoue K, Uemura S, Shiga M, Maeda H, Kitagawa H, Fukuhara H, Kobayashi M, Shuin T, Hanazaki K (2014) Photodynamic diagnosis using 5-aminolevulinic acid during gastrectomy for gastric cancer. J Surg Oncol 109:213–217CrossRefPubMedGoogle Scholar
  5. 5.
    Hagiya Y, Endo Y, Yonemura Y, Takahashi K, Ishizuka M, Abe F, Tanaka T, Okura I, Nakajima M, Ishikawa T, Ogura S (2012) Pivotal roles of peptide transporter PEPT1 and ATP-binding cassette (ABC) transporter ABCG2 in 5-aminolevulinic acid (ALA)-based photocytotoxicity of gastric cancer cells in vitro. Photodiagnosis Photodyn Ther 9:204–214CrossRefPubMedGoogle Scholar
  6. 6.
    Inoue K, Karashima T, Kamada M, Shuin T, Kurabayashi A, Furihata M, Fujita H, Utsumi K, Sasaki J (2009) Regulation of 5-aminolevulinic acid-mediated protoporphyrin IX accumulation in human urothelial carcinomas. Pathobiology 76:303–314CrossRefPubMedGoogle Scholar
  7. 7.
    Fukuhara H, Kureishi M, Khoda T, Inoue K, Tanaka T, Iketani K, Orita M, Inoue K, Shuin T (2015) The utility of a flexible fluorescence-cystoscope with a twin mode monitor for the 5-aminolevulinic acid-mediated photodynamic diagnosis of bladder cancer. PLoS One 10:e0136416CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fisher CJ, Niu C, Foltz W, Chen Y, Sidorova-Darmos E, Eubanks JH, Lilge L (2017) ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia. PLoS One 12:e0181654CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Teng L, Nakada M, Zhao SG, Endo Y, Furuyama N, Nambu E, Pyko IV, Hayashi Y, Hamada JI (2011) Silencing of ferrochelatase enhances 5-aminolevulinic acid-based fluorescence and photodynamic therapy efficacy. Br J Cancer 104:798–807CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fukuhara H, Inoue K, Satake H, Tamura K, Karashima T, Yamasaki I, Tatsuo I, Kurabayashi A, Furihata M, Shuin T (2011) Photodynamic diagnosis of positive margin during radical prostatectomy: preliminary experience with 5-aminolevulinic acid. Int J Urol 18:585–591CrossRefPubMedGoogle Scholar
  11. 11.
    Inoue K, Fukuhara H, Kurabayashi A, Furihata M, Tsuda M, Nagakawa K, Fujita H, Utsumi K, Shuin T (2013) Photodynamic therapy involves an antiangiogenic mechanism and is enhanced by ferrochelatase inhibitor in urothelial carcinoma. Cancer Sci 104:765–772CrossRefPubMedGoogle Scholar
  12. 12.
    Kishi K, Fujiwara Y, Yano M, Motoori M, Sugimura K, Takahashi H, Ohue M, Sakon M (2016) Usefulness of diagnostic laparoscopy with 5-aminolevulinic acid (ALA)-mediated photodynamic diagnosis for the detection of peritoneal micrometastasis in advanced gastric cancer after chemotherapy. Surg Today 46:1427–1434CrossRefPubMedGoogle Scholar
  13. 13.
    Motoori M, Yano M, Tanaka K, Kishi K, Takahashi H, Inoue M, Saito T, Sugimura K, Fujiwara Y, Ishikawa O, Sakon M (2015) Intraoperative photodynamic diagnosis of lymph node metastasis in esophageal cancer patients using 5-aminolevulinic acid. Oncol Lett 10:3035–3039CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ushimaru Y, Fujiwara Y, Kishi K, Sugimura K, Omori T, Moon JH, Yanagimoto Y, Ohue M, Yasui M, Takahashi H, Kobayashi S, Akita H, Miyoshi N, Tomokuni A, Sakon M, Yano M (2017) Prognostic significance of basing treatment strategy on the results of photodynamic diagnosis in advanced gastric cancer. Ann Surg Oncol 24:983–989CrossRefPubMedGoogle Scholar
  15. 15.
    Kishi K, Fujiwara Y, Yano M, Motoori M, Sugimura K, Ohue M, Noura S, Marubashi S, Takahashi H, Sakon M (2014) Diagnostic laparoscopy with 5-aminolevulinic-acid-mediated photodynamic diagnosis enhances the detection of peritoneal micrometastases in advanced gastric cancer. Oncology 87:257–265CrossRefPubMedGoogle Scholar
  16. 16.
    Kishi K, Fujiwara Y, Yano M, Inoue M, Miyashiro I, Motoori M, Shingai T, Gotoh K, Takahashi H, Noura S, Yamada T, Ohue M, Ohigashi H, Ishikawa O (2012) Staging laparoscopy using ALA-mediated photodynamic diagnosis improves the detection of peritoneal metastases in advanced gastric cancer. J Surg Oncol 106:294–298CrossRefPubMedGoogle Scholar
  17. 17.
    Murayama Y, Ichikawa D, Koizumi N, Komatsu S, Shiozaki A, Kuriu Y, Ikoma H, Kubota T, Nakanishi M, Harada Y, Fujiwara H, Okamoto K, Ochiai T, Kokuba Y, Takamatsu T, Otsuji E (2012) Staging fluorescence laparoscopy for gastric cancer by using 5-aminolevulinic acid. Anticancer Res 32:5421–5427PubMedGoogle Scholar
  18. 18.
    Kobuchi H, Moriya K, Ogino T, Fujita H, Inoue K, Shuin T, Yasuda T, Utsumi K, Utsumi T (2012) Mitochondrial localization of ABC transporter ABCG2 and its function in 5-aminolevulinic acid-mediated protoporphyrin IX accumulation. PLoS One 7:e50082CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Susanto J, Lin YH, Chen YN, Shen CR, Yan YT, Tsai ST, Chen CH, Shen CN (2008) Porphyrin homeostasis maintained by ABCG2 regulates self-renewal of embryonic stem cells. PLoS One 3:e4023CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, Chung HC, Chen JS, Muro K, Kang WK, Yeh KH, Yoshikawa T, Oh SC, Bai LY, Tamura T, Lee KW, Hamamoto Y, Kim JG, Chin K, Oh DY, Minashi K, Cho JY, Tsuda M, Chen LT (2017) Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390:2461–2471CrossRefPubMedGoogle Scholar
  21. 21.
    Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, Safran H, Dos Santos LV, Aprile G, Ferry DR, Melichar B, Tehfe M, Topuzov E, Zalcberg JR, Chau I, Campbell W, Sivanandan C, Pikiel J, Koshiji M, Hsu Y, Liepa AM, Gao L, Schwartz JD, Tabernero J, REGARD Trial Investigators (2014) Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383:31–39CrossRefPubMedGoogle Scholar
  22. 22.
    Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, Hironaka S, Sugimoto N, Lipatov O, Kim TY, Cunningham D, Rougier P, Komatsu Y, Ajani J, Emig M, Carlesi R, Ferry D, Chandrawansa K, Schwartz JD, Ohtsu A (2014) RAINBOW Study Group. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol 15:1224–1235CrossRefPubMedGoogle Scholar
  23. 23.
    Handa T, Katare RG, Nishimori H, Wariishi S, Fukutomi T, Yamamoto M, Sasaguri S, Sato T (2010) New device for intraoperative graft assessment: HyperEye charge-coupled device camera system. Gen Thorac Cardiovasc Surg 58:68–77CrossRefPubMedGoogle Scholar
  24. 24.
    Handa T, Katare RG, Sasaguri S, Sato T (2009) Preliminary experience for the evaluation of the intraoperative graft patency with real color charge-coupled device camera system: an advanced device for simultaneous capturing of color and near-infrared images during coronary artery bypass graft. Interact Cardiovasc Thorac Surg 9:150–154CrossRefPubMedGoogle Scholar
  25. 25.
    Kitagawa H, Namikawa T, Iwabu J, Fujisawa K, Uemura S, Tsuda S, Hanazaki K (2018) Assessment of the blood supply using the indocyanine green fluorescence method and postoperative endoscopic evaluation of anastomosis of the gastric tube during esophagectomy. Surg Endosc 32:1749–1754CrossRefPubMedGoogle Scholar
  26. 26.
    Namikawa T, Uemura S, Kondo N, Yamamoto M, Maeda H, Nishimori H, Sato T, Orihashi K, Kobayashi M, Hanazaki K (2014) Successful preservation of the mesenteric and bowel circulation with treatment for a ruptured superior mesenteric artery aneurysm using the HyperEye Medical System. Am Surg 80:E359–E361PubMedGoogle Scholar
  27. 27.
    Kitagawa H, Namikawa T, Munekage M, Akimori T, Kobayashi M, Hanazaki K (2015) Visualization of the stomach’s arterial networks during esophageal surgery using the hypereye medical system. Anticancer Res 35:6201–6205PubMedGoogle Scholar
  28. 28.
    Hokimoto N, Sugimoto T, Namikawa T, Funakoshi T, Oki T, Ogawa M, Fukuhara H, Inoue K, Sato T, Hanazaki K (2018) A novel color fluorescence navigation system for intraoperative transcutaneous lymphatic mapping and resection of sentinel lymph nodes in breast cancer: comparison with the combination of gamma probe scanning and visible dye methods. Oncology 94:99–106CrossRefPubMedGoogle Scholar
  29. 29.
    Yamamoto M, Orihashi K, Nishimori H, Handa T, Kondo N, Fukutomi T, Sato T (2015) Efficacy of intraoperative HyperEye Medical System angiography for coronary artery bypass grafting. Surg Today 45:966–972CrossRefPubMedGoogle Scholar
  30. 30.
    Yamamoto M, Sasaguri S, Sato T (2011) Assessing intraoperative blood flow in cardiovascular surgery. Surg Today 41:1467–1474CrossRefPubMedGoogle Scholar
  31. 31.
    Yamamoto M, Orihashi K, Nishimori H, Wariishi S, Fukutomi T, Kondo N, Kihara K, Sato T, Sasaguri S (2012) Indocyanine green angiography for intra-operative assessment in vascular surgery. Eur J Vasc Endovasc Surg 43:426–432CrossRefPubMedGoogle Scholar
  32. 32.
    Wada T, Kawada K, Takahashi R, Yoshitomi M, Hida K, Hasegawa S, Sakai Y (2017) ICG fluorescence imaging for quantitative evaluation of colonic perfusion in laparoscopic colorectal surgery. Surg Endosc 31:4184–4193CrossRefPubMedGoogle Scholar
  33. 33.
    Liberale G, Vankerckhove S, Caldon MG, Ahmed B, Moreau M, Nakadi IE, Larsimont D,Donckier V, Bourgeois P (2016) Group R&D for the clinical application of fluorescence imaging of the Jules Bordetʼs Institute. Fluorescence imaging after indocyanine green injection for detection of peritoneal metastases in patients undergoing cytoreductive surgery for peritoneal carcinomatosis from colorectal cancer: a pilot study. Ann Surg 264:1110–1115CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2018

Authors and Affiliations

  • Tsutomu Namikawa
    • 1
    • 2
  • Kazune Fujisawa
    • 1
  • Eri Munekage
    • 1
  • Jun Iwabu
    • 1
  • Sunao Uemura
    • 1
  • Shigehiro Tsujii
    • 1
  • Hiromichi Maeda
    • 3
  • Hiroyuki Kitagawa
    • 1
  • Hideo Fukuhara
    • 2
    • 4
  • Keiji Inoue
    • 2
    • 4
  • Takayuki Sato
    • 2
    • 5
  • Michiya Kobayashi
    • 3
    • 6
  • Kazuhiro Hanazaki
    • 1
    • 2
  1. 1.Department of SurgeryKochi Medical SchoolKochiJapan
  2. 2.Center for Photodynamic MedicineKochi Medical School HospitalKochiJapan
  3. 3.Cancer Treatment CenterKochi Medical School HospitalKochiJapan
  4. 4.Department of UrologyKochi Medical SchoolKochiJapan
  5. 5.Department of Cardiovascular ControlKochi Medical SchoolKochiJapan
  6. 6.Department of Human Health and Medical SciencesKochi Medical SchoolKochiJapan

Personalised recommendations