High sulfite oxidase expression could predict postoperative biochemical recurrence in patients with prostate cancer

  • Hirofumi Kurose
  • Yoshiki NaitoEmail author
  • Jun Akiba
  • Reiichiro Kondo
  • Sachiko Ogasawara
  • Hironori Kusano
  • Sakiko Sanada
  • Hideyuki Abe
  • Tatsuyuki Kakuma
  • Kosuke Ueda
  • Tsukasa Igawa
  • Hirohisa Yano
Original Paper


Sulfite oxidase (SUOX) is a metalloenzyme that plays a role in ATP synthesis via oxidative phosphorylation in mitochondria and has been reported to also be involved in the invasion and differentiation capacities of tumor cells. Here, we performed a clinicopathological investigation of SUOX expression in prostate cancer and discussed the usefulness of SUOX expression as a predictor of biochemical recurrence following surgical treatment in prostate cancer. This study was conducted using Tissue Micro Array specimens obtained from 97 patients who underwent radical prostatectomy at our hospital between 2007 and 2011. SUOX staining was used to evaluate cytoplasmic SUOX expression. In the high-expression group, the early biochemical recurrence was significantly more frequent than in the low-expression group (p = 0.0008). In multivariate analysis, high SUOX expression was found to serve as an independent prognostic factor of biochemical recurrence (hazard ratio = 2.33, 95% confidence interval = 1.32–4.15, p = 0.0037). In addition, Ki-67-labeling indices were significantly higher in the high-expression group than in the low-expression group (p = 0.0058). Therefore, SUOX expression may be a powerful prognostic biomarker for decision-making in postoperative follow-up after total prostatectomy and with regard to the need for relief treatment.


Prostate cancer SUOX Biomarker Biochemical recurrence Oxidative phosphorylation 


Compliance with ethical standards

Conflict of interest

All authors have declared that they have no conflicts of interest.


  1. 1.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30CrossRefGoogle Scholar
  2. 2.
    Nichol AM, Warde P, Bristow RG (2005) Optimal treatment of intermediate-risk prostate carcinoma with radiotherapy: clinical and translational issues. Cancer 104(5):891–905CrossRefGoogle Scholar
  3. 3.
    Lowrance WT, Eastham JA, Savage C, Maschino AC, Laudone VP, Dechet CB, Stephenson RA, Scardino PT, Sandhu JS (2012) Contemporary open and robotic radical prostatectomy practice patterns among urologists in the United States. J Urol 187(6):2087–2092CrossRefGoogle Scholar
  4. 4.
    Hull GW, Rabbani F, Abbas F, Wheeler TM, Kattan MW, Scardino PT (2002) Cancer control with radical prostatectomy alone in 1,000 consecutive patients. J Urol 167(2 Pt 1):528–534CrossRefGoogle Scholar
  5. 5.
    Schild SE, Wong WW, Novicki DE, Ferrigni RG, Swanson SK (1996) Detection of residual prostate cancer after radical prostatectomy with the Abbott IMx PSA assay. Urology 47(6):878–881CrossRefGoogle Scholar
  6. 6.
    Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC (1999) Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281(17):1591–1597CrossRefGoogle Scholar
  7. 7.
    Freedland SJ, Sutter ME, Dorey F, Aronson WJ (2003) Defining the ideal cutpoint for determining PSA recurrence after radical prostatectomy. Prostate-specific antigen. Urology 61(2):365–369CrossRefGoogle Scholar
  8. 8.
    D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, Tomaszewski JE, Renshaw AA, Kaplan I, Beard CJ, Wein A (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280(11):969–974CrossRefGoogle Scholar
  9. 9.
    D’Amico AV, Chen MH, Roehl KA, Catalona WJ (2004) Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. New Engl J Med 351(2):125–135CrossRefGoogle Scholar
  10. 10.
    Horiguchi A, Nakashima J, Horiguchi Y, Nakagawa K, Oya M, Ohigashi T, Marumo K, Murai M (2003) Prediction of extraprostatic cancer by prostate specific antigen density, endorectal MRI, and biopsy Gleason score in clinically localized prostate cancer. Prostate 56(1):23–29CrossRefGoogle Scholar
  11. 11.
    Ohori M, Kattan MW, Koh H, Maru N, Slawin KM, Shariat S, Muramoto M, Reuter VE, Wheeler TM, Scardino PT (2004) Predicting the presence and side of extracapsular extension: a nomogram for staging prostate cancer. J Urol 171(5):1844–1849; (discussion 49) CrossRefGoogle Scholar
  12. 12.
    Stephenson AJ, Shariat SF, Zelefsky MJ, Kattan MW, Butler EB, Teh BS, Klein EA, Kupelian PA, Roehrborn CG, Pistenmaa DA, Pacholke HD, Liauw SL, Katz MS, Leibel SA, Scardino PT, Slawin KM (2004) Salvage radiotherapy for recurrent prostate cancer after radical prostatectomy. JAMA 291(11):1325–1332CrossRefGoogle Scholar
  13. 13.
    Swindle P, Eastham JA, Ohori M, Kattan MW, Wheeler T, Maru N, Slawin K, Scardino PT (2008) Do margins matter? The prognostic significance of positive surgical margins in radical prostatectomy specimens. J Urol 179(5 Suppl):S47–S51Google Scholar
  14. 14.
    Budaus L, Isbarn H, Eichelberg C, Lughezzani G, Sun M, Perrotte P, Chun FK, Salomon G, Steuber T, Kollermann J, Sauter G, Ahyai SA, Zacharias M, Fisch M, Schlomm T, Haese A, Heinzer H, Huland H, Montorsi F, Graefen M, Karakiewicz PI (2010) Biochemical recurrence after radical prostatectomy: multiplicative interaction between surgical margin status and pathological stage. J Urol 184(4):1341–1346CrossRefGoogle Scholar
  15. 15.
    Yossepowitch O, Briganti A, Eastham JA, Epstein J, Graefen M, Montironi R, Touijer K (2014) Positive surgical margins after radical prostatectomy: a systematic review and contemporary update. Eur Urol 65(2):303–313CrossRefGoogle Scholar
  16. 16.
    Negishi T, Kuroiwa K, Hori Y, Tomoda T, Uchino H, Tokuda N, Furubayashi N, Nagase K, Iwai H, Nakamura M (2017) Predictive factors of late biochemical recurrence after radical prostatectomy. Jpn J Clin Oncol 47(3):233–238CrossRefGoogle Scholar
  17. 17.
    Feng C, Kedia RV, Hazzard JT, Hurley JK, Tollin G, Enemark JH (2002) Effect of solution viscosity on intramolecular electron transfer in sulfite oxidase. Biochemistry 41(18):5816–5821CrossRefGoogle Scholar
  18. 18.
    Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, Rajagopalan KV, Enemark JH, Rees DC (1997) Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91(7):973–983CrossRefGoogle Scholar
  19. 19.
    D’Errico G, Di Salle A, La Cara F, Rossi M, Cannio R (2006) Identification and characterization of a novel bacterial sulfite oxidase with no heme binding domain from Deinococcus radiodurans. J Bacteriol 188(2):694–701CrossRefGoogle Scholar
  20. 20.
    Tan WH, Eichler FS, Hoda S, Lee MS, Baris H, Hanley CA, Grant PE, Krishnamoorthy KS, Shih VE (2005) Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics 116(3):757–766CrossRefGoogle Scholar
  21. 21.
    Cohen HJ, Betcher-Lange S, Kessler DL, Rajagopalan KV (1972) Hepatic sulfite oxidase. Congruency in mitochondria of prosthetic groups and activity. J Biol Chem 247(23):7759–7766Google Scholar
  22. 22.
    Jin GZ, Yu WL, Dong H, Zhou WP, Gu YJ, Yu H, Yu H, Lu XY, Xian ZH, Liu YK, Cong WM, Wu MC (2013) SUOX is a promising diagnostic and prognostic biomarker for hepatocellular carcinoma. J Hepatol 59(3):510–517CrossRefGoogle Scholar
  23. 23.
    Nakamura K, Akiba J, Ogasawara S, Naito Y, Nakayama M, Abe Y, Kusukawa J, Yano H (2018) SUOX is negatively associated with multistep carcinogenesis and proliferation in oral squamous cell carcinoma. Med Mol Morphol 51(2):102–110CrossRefGoogle Scholar
  24. 24.
    H PA (2016) WHO clasification of tumors of the prostate. 138–62Google Scholar
  25. 25.
    Helps SC, Thornton E, Kleinig TJ, Manavis J, Vink R (2012) Automatic nonsubjective estimation of antigen content visualized by immunohistochemistry using color deconvolution. Appl Immunohistochem Mol Morphol 20(1):82–90CrossRefGoogle Scholar
  26. 26.
    Ruifrok AC, Johnston DA (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23(4):291–299Google Scholar
  27. 27.
    Aoun F, Albisinni S, Henriet B, Tombal B, Van Velthoven R, Roumeguere T (2017) Predictive factors associated with biochemical recurrence following radical prostatectomy for pathological T2 prostate cancer with negative surgical margins. Scand J Urol 51(1):20–26CrossRefGoogle Scholar
  28. 28.
    Lee S, Jeong CW, Jeong SJ, Hong SK, Choi W, Byun SS, Lee SE (2013) The prognostic value of pathologic prostate-specific antigen mass ratio in patients with localized prostate cancer with negative surgical resection margins. Urology 82(4):865–869CrossRefGoogle Scholar
  29. 29.
    Cao D, Kibel AS, Gao F, Tao Y, Humphrey PA (2010) The Gleason score of tumor at the margin in radical prostatectomy is predictive of biochemical recurrence. Am J Surg Pathol 34(7):994–1001CrossRefGoogle Scholar
  30. 30.
    Muniyan S, Chen SJ, Lin FF, Wang Z, Mehta PP, Batra SK, Lin MF (2015) ErbB-2 signaling plays a critical role in regulating androgen-sensitive and castration-resistant androgen receptor-positive prostate cancer cells. Cell Signal 27(11):2261–2271CrossRefGoogle Scholar
  31. 31.
    Tobiume M, Yamada Y, Nakamura K, Aoki S, Zennami K, Kato Y, Nishikawa G, Yokoi T, Honda N (2011) Significant prognostic factor of immunohistochemical HER-2 expression using initial prostate biopsy specimens with M1b prostate cancer. Prostate 71(4):385–393CrossRefGoogle Scholar
  32. 32.
    Igawa T (2017) Role of protein phosphatases in genitourinary cancers. Int J Urol 24(1):16–24CrossRefGoogle Scholar
  33. 33.
    Xiao H, Wang J, Yan W, Cui Y, Chen Z, Gao X, Wen X, Chen J (2018) GLUT1 regulates cell glycolysis and proliferation in prostate cancer. Prostate 78(2):86–94CrossRefGoogle Scholar
  34. 34.
    Reinicke K, Sotomayor P, Cisterna P, Delgado C, Nualart F, Godoy A (2012) Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue. J Cell Biochem 113(2):553–562CrossRefGoogle Scholar
  35. 35.
    Vaupel P (2018) Hypoxia in prostate cancer. J Cancer Metast Treat 4(5)Google Scholar
  36. 36.
    Fukushima H, Yasumoto M, Ogasawara S, Akiba J, Kitasato Y, Nakayama M, Naito Y, Ishida Y, Okabe Y, Yasunaga M, Horiuchi H, Sakamoto E, Itadani H, Mizuarai S, Oie S, Yano H (2016) ARHGEF15 overexpression worsens the prognosis in patients with pancreatic ductal adenocarcinoma through enhancing the motility and proliferative activity of the cancer cells. Mol Cancer 15(1):32CrossRefGoogle Scholar
  37. 37.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899CrossRefGoogle Scholar
  38. 38.
    Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218CrossRefGoogle Scholar
  39. 39.
    Locasale JW, Cantley LC (2011) Metabolic flux and the regulation of mammalian cell growth. Cell Metab 14(4):443–451CrossRefGoogle Scholar
  40. 40.
    Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Investig 118(12):3930–3942Google Scholar
  41. 41.
    Epstein JI, Zelefsky MJ, Sjoberg DD, Nelson JB, Egevad L, Magi-Galluzzi C, Vickers AJ, Parwani AV, Reuter VE, Fine SW, Eastham JA, Wiklund P, Han M, Reddy CA, Ciezki JP, Nyberg T, Klein EA (2016) A Contemporary prostate cancer grading system: a validated alternative to the gleason score. Eur Urol 69(3):428–435CrossRefGoogle Scholar
  42. 42.
    Ham WS, Chalfin HJ, Feng Z, Trock BJ, Epstein JI, Cheung C, Humphreys E, Partin AW, Han M (2017) New prostate cancer grading system predicts long-term survival following surgery for gleason score 8–10 prostate cancer. Eur Urol 71(6):907–912CrossRefGoogle Scholar
  43. 43.
    Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L, Wodzak M, Klimko C, McMillan E, Butt Y, Ni M, Oliver D, Torrealba J, Malloy CR, Kernstine K, Lenkinski RE, DeBerardinis RJ (2016) Metabolic heterogeneity in human lung tumors. Cell 164(4):681–694CrossRefGoogle Scholar
  44. 44.
    Kerr EM, Gaude E, Turrell FK, Frezza C, Martins CP (2016) Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature 531(7592):110–113CrossRefGoogle Scholar
  45. 45.
    Yossepowitch O, Bjartell A, Eastham JA, Graefen M, Guillonneau BD, Karakiewicz PI, Montironi R, Montorsi F (2009) Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences. Eur Urol 55(1):87–99CrossRefGoogle Scholar
  46. 46.
    Lattouf JB, Saad F (2003) Digital rectal exam following prostatectomy: is it still necessary with the use of PSA? Eur Urol 43(4):333–336CrossRefGoogle Scholar
  47. 47.
    Pound CR, Christens-Barry OW, Gurganus RT, Partin AW, Walsh PC (1999) Digital rectal examination and imaging studies are unnecessary in men with undetectable prostate specific antigen following radical prostatectomy. J Urol 162(4):1337–1340CrossRefGoogle Scholar

Copyright information

© The Japanese Society for Clinical Molecular Morphology 2019

Authors and Affiliations

  • Hirofumi Kurose
    • 1
    • 2
  • Yoshiki Naito
    • 1
    • 3
    Email author return OK on get
  • Jun Akiba
    • 3
  • Reiichiro Kondo
    • 1
  • Sachiko Ogasawara
    • 1
  • Hironori Kusano
    • 1
  • Sakiko Sanada
    • 1
  • Hideyuki Abe
    • 3
  • Tatsuyuki Kakuma
    • 4
  • Kosuke Ueda
    • 2
  • Tsukasa Igawa
    • 2
  • Hirohisa Yano
    • 1
  1. 1.Department of PathologyKurume University School of MedicineKurumeJapan
  2. 2.Department of UrologyKurume University School of MedicineKurumeJapan
  3. 3.Department of Diagnostic PathologyKurume University HospitalKurumeJapan
  4. 4.Biostatistics CenterKurume University School of MedicineKurumeJapan

Personalised recommendations