Advertisement

Extremophiles

, Volume 23, Issue 5, pp 613–624 | Cite as

Endonucleases responsible for DNA repair of helix-distorting DNA lesions in the thermophilic crenarchaeon Sulfolobus acidocaldarius in vivo

  • Shoji Suzuki
  • Norio KurosawaEmail author
Original Paper
  • 94 Downloads

Abstract

The DNA repair mechanisms of hyperthermophiles can provide important insights for understanding how genetic information is maintained under extreme environments. Recent biochemical studies have identified a novel endonuclease in hyperthermophilic archaea, NucS/EndoMS, that acts on branched DNA substrates and mismatched bases. NucS/EndoMS is thought to participate in the DNA repair of helix-distorting DNA lesions, including UV-induced DNA damage and DNA adducts, and mismatched bases; however, the specific in vivo role of NucS/EndoMS in hyperthermophilic archaeal DNA repair has not been reported. To explore the role of this protein, we knocked out the nucS/endoMS gene of the thermophilic crenarchaeon Sulfolobus acidocaldarius and characterized the mutant phenotypes. While the nucS/endoMS-deleted strain exhibited sensitivity to DNA adducts, it did not have high mutation rates or any sensitivity to UV irradiation. It has been proposed that the XPF endonuclease is involved in homologous recombination-mediated stalled-fork DNA repair. The xpf-deficient strain exhibited sensitivity to helix-distorting DNA lesions, but the sensitivity of the nucS/endoMS and xpf double knockout strain did not increase compared to that of the single knockout strains. We conclude that the endonuclease NucS/EndoMS works with XPF in homologous recombination-mediated stalled-fork DNA repair for the removal of helix-distorting DNA lesions in S. acidocaldarius.

Keywords

Hyperthermophilic archaea Sulfolobus acidocaldarius DNA repair Helix-distorting DNA lesion NucS/EndoMS Stalled-fork DNA repair 

Abbreviations

HA

Hyperthermophilic archaea

HR

Homologous recombination

NER

Nucleotide excision repair

MMR

Mismatch repair

4-NQNO

4-Nitroquinoline N-oxide

Notes

Supplementary material

792_2019_1120_MOESM1_ESM.pdf (334 kb)
Supplementary material 1 (PDF 333 kb)

References

  1. Ariyoshi M, Morikawa K (2016) A dual base flipping mechanism for archaeal mismatch repair. Structure 24:1859–1861.  https://doi.org/10.1016/j.str.2016.10.004 CrossRefGoogle Scholar
  2. Bernander R, Poplawski A (1997) Cell cycle characteristics of thermophilic archaea. J Bacteriol 179:4963–4969.  https://doi.org/10.1128/jb.179.16.4963-4969.1997 CrossRefGoogle Scholar
  3. Böhm K, Meyer F, Rhomberg A, Kalinowski J, Donovan C, Bramkamp M (2017) Novel chromosome organization pattern in actinomycetales—overlapping replication cycles combined with diploidy. mBio 8:e00511–17.  https://doi.org/10.1128/mbio.00511-17 CrossRefGoogle Scholar
  4. Castañeda-García A, Prieto AI, Beltrán JA, Alonso N, Cantillon D, Costas C, Lago LP, Zegeye ED, Herranz M, Plociński P, Tonjum T, García de Viedma D, Paget M, Waddell SJ, Rojas AM, Doherty AJ, Blázquez J (2016) A non-canonical mismatch repair pathway in prokaryotes. Nat Commun 8:14246.  https://doi.org/10.1038/ncomms14246 CrossRefGoogle Scholar
  5. Creze C, Lestini R, Kühn J, Ligabue A, Becker HF, Czjzek M, Flament D, Myllykallio H (2011) Structure and function of a novel endonuclease acting on branched DNA substrates. Biochem Soc Trans 39:145–149.  https://doi.org/10.1042/BST0390145 CrossRefGoogle Scholar
  6. Creze C, Ligabue A, Laurent S, Lestini R, Laptenok SP, Khun J, Vos MH, Czjzek M, Myllykallio H, Flament D (2012) Modulation of the Pyrococcus abyssi NucS endonuclease activity by replication clamp at functional and structural levels. J Biol Chem 287:15648–15660.  https://doi.org/10.1074/jbc.M112.346361 CrossRefGoogle Scholar
  7. Fujikane R, Ishino S, Ishino Y, Forterre P (2010) Genetic analysis of DNA repair in the hyperthermophilic archaeon, Thermococcus kodakaraensis. Genes Genet Syst 85:243–257.  https://doi.org/10.1266/ggs.85.243 CrossRefGoogle Scholar
  8. Gorgan DW (1998) Hyperthermophiles and the problem of DNA stability. Mol Microbiol 28:1043–1049.  https://doi.org/10.1046/j.1365-2958.1998.00853.x CrossRefGoogle Scholar
  9. Grogan DW (1996) Isolation of Sulfolobus acidocaldarius mutants. In: Robb FT, Place AR, Sowers KR, Schreier HJ, DasSarma S, Fleishmann EM (eds) Archaea: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  10. Grogan DW (2000) The question of DNA repair in hyperthermophilic archaea. Trends Microbiol 8:180–185.  https://doi.org/10.1016/S0966-842X(00)01729-7 CrossRefGoogle Scholar
  11. Grogan DW (2004) Stability and repair of DNA in hyperthermophilic archaea. Mol Biol 6:137–144Google Scholar
  12. Grogan DW (2015) Understanding DNA repair in hyperthermophilic archaea: persistent gaps and other reactions to focus on the fork. Archaea.  https://doi.org/10.1155/2015/942605 Google Scholar
  13. Hildenbrand C, Stock T, Lange C, Rother M, Soppa J (2011) Genome copy numbers and gene conversion in methanogenic archaea. J Bacteriol 193:734–743.  https://doi.org/10.1128/JB.01016-10 CrossRefGoogle Scholar
  14. Imlay JA, Chin SM, Linn S (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–642.  https://doi.org/10.1126/science.2834821 CrossRefGoogle Scholar
  15. Ishino S, Nishi Y, Oda S, Uemori T, Sagara T, Takatsu N, Yamagami T, Shirai T, Ishino Y (2016) Identification of a mismatch-specific endonuclease in hyperthermophilic archaea. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkw153 Google Scholar
  16. Ishino S, Skouloubris S, Kudo H, I’Hermitte-Stead C, Es-Sadik A, Lambry JC, Ishino Y, Myllykallio H (2018) Activation of the mismatch-specific endonuclease EndoMS/NucS by the replication clamp is required for high fidelity DNA replication. Nucleic Acids Res 46:6206–6217.  https://doi.org/10.1093/nar/gky460 CrossRefGoogle Scholar
  17. Jacobs KL, Grogan DW (1997) Rates of spontaneous mutation in an archaeon from geothermal environments. J Bacteriol 179:3298–3303.  https://doi.org/10.1128/jb.179.10.3298-3303.1997 CrossRefGoogle Scholar
  18. Komori K, Fujikane R, Shinagawa H, Ishino Y (2002) Novel endonuclease in archaea cleaving with various branched structure. Genes Genet Syst 77:227–241.  https://doi.org/10.1266/ggs.77.227 CrossRefGoogle Scholar
  19. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715CrossRefGoogle Scholar
  20. Lundgren M, Malandrin L, Eriksson S, Huber H, Bernander R (2008) Cell cycle characteristics of crenarchaeota: unity among diversity. J Bacteriol 190:5362–5367.  https://doi.org/10.1128/JB.00330-08 CrossRefGoogle Scholar
  21. Nakane S, Hijikata A, Yonezawa K, Kouyama K, Mayanagi K, Ishino S, Ishino Y, Shirai T (2016) Structure of the EndoMS-DNA complex as mismatch restriction endonuclease. Structure 24:1960–1971.  https://doi.org/10.1016/j.str.2016.09.005 CrossRefGoogle Scholar
  22. Reilly MS, Grogan DW (2001) Characterization of intragenic recombination in a hyperthermophilic archaeon via conjugational DNA exchange. J Bacteriol 183:2943–2946.  https://doi.org/10.1128/JB.183.9.2943-2946.2001 CrossRefGoogle Scholar
  23. Ren B, Kühn J, Meslet-Cladiere L, Briffotaux J, Norais C, Lavigne R, Flament D, Ladenstein R, Myllykallio H (2009) Structure and function of a novel endonuclease acting on branched DNA substrates. EMBO J 28:2479–2489.  https://doi.org/10.1038/emboj.2009.192 CrossRefGoogle Scholar
  24. Rezugui R, Lestini R, Kühn J, Fave X, McLeod L, Myllykallio H, Alexandrou A, Bouzigues C (2014) Differential interaction kinetics of a bipolar structure-specific endonuclease with DNA flaps revealed by single-molecule imaging. PLoS One 9:e113493.  https://doi.org/10.1371/journal.pone.0113493 CrossRefGoogle Scholar
  25. Roberts JA, White MF (2005) An archaeal endonuclease displays key properties of both eukaryal XPF-ERCC1 and Mus81. J Biol Chem 280:5924–5928.  https://doi.org/10.1074/jbc.M412766200 CrossRefGoogle Scholar
  26. Roberts JA, Bell SD, White MF (2003) An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA. Mol Microbiol 48:361–371.  https://doi.org/10.1046/j.1365-2958.2003.03444.x CrossRefGoogle Scholar
  27. Rosche WA, Foster PL (2000) Determining mutation rates in bacterial populations. Methods 20:4–17.  https://doi.org/10.1006/meth.1999.0901 CrossRefGoogle Scholar
  28. Rouillon C, White MF (2011) The evolution and mechanisms of nucleotide excision repair proteins. Res Microbiol 162:19–26.  https://doi.org/10.1016/j.resmic.2010.09.003 CrossRefGoogle Scholar
  29. Sachadyn P (2010) Conservation and diversity of MutS proteins. Mutat Res Fundam Mol Mech Mutagen 694:20–30.  https://doi.org/10.1016/j.mrfmmm.2010.08.009 CrossRefGoogle Scholar
  30. Spaans SK, Oost J, Kengen SWM (2015) The chromosome copy number of the hyperthermophilic archaeon Thermococcus kodakarensis KOD1. Extremophiles 19:741–750.  https://doi.org/10.1007/s00792-015-0750-5 CrossRefGoogle Scholar
  31. Suzuki S, Kurosawa N (2016) Disruption of the gene encoding restriction endonuclease SuaI and development of a host-vector system for the thermoacidophilic archaeon Sulfolobus acidocaldarius. Extremophiles 20:139–148.  https://doi.org/10.1007/s00792-016-0807-0 CrossRefGoogle Scholar
  32. Suzuki S, Kurosawa N (2017) Development of the multiple gene knockout system with one-step PCR in thermophilic crenarchaeon Sulfolobus acidocaldarius. Archaea.  https://doi.org/10.1155/2017/7459310 Google Scholar
  33. Takemoto N, Numata I, Su’etsugu M, Akiyama MT (2018) Bacterial EndoMS/NucS acts as a clamp-mediated mismatch endonuclease to prevent asymmetric accumulation of replication errors. Nucleic Acids Res 46:6152–6165.  https://doi.org/10.1093/nar/gky481 CrossRefGoogle Scholar
  34. White MF (2007) DNA repair. In: Garrett RA, Klenk HP (eds) Archaea: evolution, physiology and molecular biology, Chapter 15. Blackwell, Malden, MA, pp 171–183Google Scholar
  35. White MF (2011) Homologous recombination in the archaea: the means justify the ends. Biochem Soc Trans 39:15–19.  https://doi.org/10.1042/BST0390015 CrossRefGoogle Scholar
  36. White MF, Allers T (2018) DNA repair in the archaea—an emerging picture. FEMS Microbiol Rev 42:514–526.  https://doi.org/10.1093/femsre/fuy020 Google Scholar
  37. Zhang C, Tian B, Li S, Ao X, Dalgaard K, Gökce S, Liang Y, She Q (2013) Genetic manipulation in Sulfolobus islandicus and functional analysis of DNA repair genes. Biochem Soc Trans 41:405–410.  https://doi.org/10.1042/BST20120285 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Science and Engineering for Sustainable Development, Faculty of Science and EngineeringSoka UniversityTokyoJapan

Personalised recommendations