Advertisement

Extremophiles

, Volume 23, Issue 5, pp 587–597 | Cite as

Oxidative stress under low oxygen conditions triggers hyperflagellation and motility in the Antarctic bacterium Pseudomonas extremaustralis

  • Esmeralda C. Solar Venero
  • Martiniano M. Ricardi
  • María Gomez-Lozano
  • Søren Molin
  • Paula M. TribelliEmail author
  • Nancy I. LópezEmail author
Original Paper

Abstract

Reactive oxygen species and nitrogen species (ROS and RNS), produced in a wide range of physiological process even under low oxygen availability, are among the main stressors found in the environment. Strategies developed to combat them constitute key features in bacterial adaptability and survival. Pseudomonas extremaustralis is a metabolic versatile and stress resistant Antarctic bacterium, able to grow under different oxygen conditions. The present work explores the effect of oxidative stress under low oxygen conditions in P. extremaustralis, by combining RNA deep sequencing analysis and physiological studies. Cells grown under microaerobiosis exhibited more oxidative damage in macromolecules and lower survival rates than under aerobiosis. RNA-seq analysis showed an up-regulation of genes related with oxidative stress response, flagella, chemotaxis and biofilm formation while chaperones and cytochromes were down-regulated. Microaerobic cultures exposed to H2O2 also displayed a hyper-flagellated phenotype coupled with a high motility behavior. Moreover, cells that were subjected to oxidative stress presented increased biofilm formation. Altogether, our results suggest that a higher motile behavior and augmented capacity to form biofilm structures could work in addition to well-known antioxidant enzymes and non-enzymatic ROS scavenging mechanisms to cope with oxidative stress at low oxygen tensions.

Keywords

RNA-seq Biofilms Low oxygen availability Antioxidative enzymes Chemotaxis Reactive oxygen species 

Abbreviations

DNPH

2,4-dinitrophenylhydrazine

dPNAG

Poly-β-1,6-N-acetyl-d-glucosamine

EPS

Exopolysaccharides

GO

Gene ontology

qRT

PCR Quantitative real-time PCR

RNS

Reactive nitrogen species

ROS

Reactive oxygen species

RPKM

Reads per kilobase per million mapped reads

SODs

Superoxide dismutases

sRNA

Small RNA

TEM

Transmission electron microscopy

Notes

Acknowledgements

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) [grant number PIP No. 11220130100450CO]; and the Universidad de Buenos Aires [grant number 20020170100310BA]. MMR, PMT and NIL are career investigators from CONICET (Argentina). ECSV has a graduate student fellowship from CONICET.

Author contributions

ECSV, PMT and NIL conceived and designed the experiments. ECSV, MGL and PMT performed the experiments. ECSV, PMT, MMR and NIL analyzed the data. SM and NIL contributed with reagents/materials/analysis tools. ECSV, PMT and NIL wrote the manuscript.

Compliance with ethical standards

Conflict of interest

None.

Supplementary material

792_2019_1110_MOESM1_ESM.pdf (306 kb)
Supplementary material 1 (PDF 306 kb)
792_2019_1110_MOESM2_ESM.docx (34 kb)
Supplementary material 2 (DOCX 33 kb)

References

  1. Alves PM, Al-Badi E, Withycombe C et al (2018) Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed biofilm. Pathog Dis 76:fty003.  https://doi.org/10.1093/femspd/fty003 CrossRefGoogle Scholar
  2. Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105Google Scholar
  3. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399.  https://doi.org/10.1146/annurev.arplant.55.031903.141701 CrossRefGoogle Scholar
  4. Arai H (2011) Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa. Front Microbiol 5:103.  https://doi.org/10.3389/fmicb.2011.00103 Google Scholar
  5. Ayub ND, Pettinari MJ, Ruiz JA, López NI (2004) A polyhydroxybutyrate-producing Pseudomonas sp. isolated from antarctic environments with high stress resistance. Curr Microbiol 49:170–174.  https://doi.org/10.1007/s00284-004-4254-2 CrossRefGoogle Scholar
  6. Ayub ND, Tribelli PM, López NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 13:59–66.  https://doi.org/10.1007/s00792-008-0197-z CrossRefGoogle Scholar
  7. Baptista JM, Justino MC, Melo AMP et al (2012) Oxidative stress modulates the nitric oxide defense promoted by Escherichia coli flavorubredoxin. J Bacteriol 194:3611–3617.  https://doi.org/10.1128/JB.00140-12 CrossRefGoogle Scholar
  8. Barahona E, Navazo A, Garrido-Sanz D et al (2016) Pseudomonas fluorescens F113 can produce a second flagellar apparatus, which is important for plant root colonization. Front Microbiol 7:1471.  https://doi.org/10.3389/fmicb.2016.01471 CrossRefGoogle Scholar
  9. Belas R (2014) Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol 22:517–527.  https://doi.org/10.1016/j.tim.2014.05.002 CrossRefGoogle Scholar
  10. Bi S, Sourjik V (2018) Stimulus sensing and signal processing in bacterial chemotaxis. Curr Opin Microbiol 45:22–29.  https://doi.org/10.1016/j.mib.2018.02.002 CrossRefGoogle Scholar
  11. Caiazza NC, Merritt JH, Brothers KM, O’Toole GA (2007) Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189:3603–3612.  https://doi.org/10.1128/JB.01685-06 CrossRefGoogle Scholar
  12. Caspi R, Billington R, Ferrer L et al (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44:D471–D480.  https://doi.org/10.1093/nar/gkv1164 CrossRefGoogle Scholar
  13. Chavez FP, Lunsdorf H, Jerez CA (2004) Growth of polychlorinated-biphenyl-degrading bacteria in the presence of biphenyl and chlorobiphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate. Appl Environ Microbiol 70:3064–3072.  https://doi.org/10.1128/AEM.70.5.3064 CrossRefGoogle Scholar
  14. Chung IY, Kim B, Jang HJ, Cho YH (2016) Dual promoters of the major catalase (KatA) govern distinct survival strategies of Pseudomonas aeruginosa. Sci Rep 6:31185.  https://doi.org/10.1038/srep31185 CrossRefGoogle Scholar
  15. Cole JA (2018) Anaerobic bacterial response to nitrosative stress. Adv Microb Physiol 72:193–237CrossRefGoogle Scholar
  16. Conesa A, Götz S, García-Gómez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676.  https://doi.org/10.1093/bioinformatics/bti610 CrossRefGoogle Scholar
  17. D’Abzac P, Bordas F, Van Hullebusch E et al (2010) Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols. Appl Microbiol Biotechnol 85:1589–1599.  https://doi.org/10.1007/s00253-009-2288-x CrossRefGoogle Scholar
  18. Guttenplan SB, Kearns DB (2013) Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 37:849–871.  https://doi.org/10.1111/1574-6976.12018 CrossRefGoogle Scholar
  19. Heo Y-J, Chung I-Y, Cho W-J et al (2010) The Major Catalase gene (katA) of Pseudomonas aeruginosa PA14 Is under both positive and negative control of the global transactivator OxyR in response to hydrogen peroxide. J Bacteriol 192:381–390.  https://doi.org/10.1128/JB.00980-09 CrossRefGoogle Scholar
  20. Jackson AA, Gross MJ, Daniels EF et al (2013) Anr and its activation by PlcH activity in Pseudomonas aeruginosa host colonization and virulence. J Bacteriol 195:3093–3104.  https://doi.org/10.1128/JB.02169-12 CrossRefGoogle Scholar
  21. Jo I, Chung I-Y, Bae H-W et al (2015) Structural details of the OxyR peroxide-sensing mechanism. Proc Natl Acad Sci 112:6443–6448.  https://doi.org/10.1073/pnas.1424495112 CrossRefGoogle Scholar
  22. Kearns DB (2011) A field guide to bacterial swarming motility. Nat Rev Micro 8:634–644.  https://doi.org/10.1038/nrmicro2405.A CrossRefGoogle Scholar
  23. Kim S-K, Lee J-H (2016) Biofilm dispersion in Pseudomonas aeruginosa. J Microbiol 54:71–85.  https://doi.org/10.1007/s12275-016-5528-7 CrossRefGoogle Scholar
  24. Kim J, Park W (2014) Oxidative stress response in Pseudomonas putida. Appl Microbiol Biotechnol 98:6933–6946.  https://doi.org/10.1007/s00253-014-5883-4 CrossRefGoogle Scholar
  25. Kohanski MA, Dwyer DJ, Hayete B et al (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810.  https://doi.org/10.1016/j.cell.2007.06.049 CrossRefGoogle Scholar
  26. Koháryová M, Kolárová M (2008) Oxidative stress and thioredoxin system. Gen Physiol Biophys 27:71–84Google Scholar
  27. Larionov A, Krause A, Miller W (2005) A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6:62.  https://doi.org/10.1186/1471-2105-6-62 CrossRefGoogle Scholar
  28. Levine RL, Wehr N, Williams JA et al (2000) Determination of carbonyl groups in oxidized proteins. Methods Mol Biol 99:15–24.  https://doi.org/10.1385/1-59259-054-3:15 Google Scholar
  29. Little DJ, Li G, Ing C et al (2014) Modification and periplasmic translocation of the biofilm exopolysaccharide poly- -1,6-N-acetyl-d-glucosamine. Proc Natl Acad Sci 111:11013–11018.  https://doi.org/10.1073/pnas.1406388111 CrossRefGoogle Scholar
  30. López NI, Pettinari MJ, Stackebrandt E et al (2009) Pseudomonas extremaustralis sp. nov., a Poly(3-hydroxybutyrate) producer isolated from an antarctic environment. Curr Microbiol 59:514–519.  https://doi.org/10.1007/s00284-009-9469-9 CrossRefGoogle Scholar
  31. McClure R, Balasubramanian D, Sun Y et al (2013) Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res 41:e140.  https://doi.org/10.1093/nar/gkt444 CrossRefGoogle Scholar
  32. Morales-Soto N, Anyan ME, Mattingly AE et al (2015) Preparation, imaging, and quantification of bacterial surface motility assays. J Vis Exp.  https://doi.org/10.3791/52338 Google Scholar
  33. Munch R (2003) PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Res 31:266–269.  https://doi.org/10.1093/nar/gkg037 CrossRefGoogle Scholar
  34. Nikel PI, Pérez-Pantoja D, de Lorenzo V (2016) Pyridine nucleotide transhydrogenases enable redox balance of Pseudomonas putida during biodegradation of aromatic compounds. Environ Microbiol 18:3565–3582.  https://doi.org/10.1111/1462-2920.13434 CrossRefGoogle Scholar
  35. O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304.  https://doi.org/10.1046/j.1365-2958.1998.01062.x CrossRefGoogle Scholar
  36. Ogata H, Goto S, Sato K et al (1999) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34.  https://doi.org/10.1093/nar/27.1.29 CrossRefGoogle Scholar
  37. Pezzoni M, Pizarro RA, Costa CS (2014) Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms. J Photochem Photobiol, B 131:53–64.  https://doi.org/10.1016/j.jphotobiol.2014.01.005 CrossRefGoogle Scholar
  38. Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293.  https://doi.org/10.1046/j.1365-2958.1998.01061.x CrossRefGoogle Scholar
  39. Raiger Iustman LJ, Tribelli PM, Ibarra JG et al (2015) Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance. Extremophiles 19:207–220.  https://doi.org/10.1007/s00792-014-0700-7 CrossRefGoogle Scholar
  40. Redondo-Nieto M, Barret M, Morrissey J et al (2013) Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics 14:54.  https://doi.org/10.1186/1471-2164-14-54 CrossRefGoogle Scholar
  41. Sampedro I, Parales RE, Krell T, Hill JE (2015) Pseudomonas chemotaxis. FEMS Microbiol Rev 39:17–46Google Scholar
  42. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  43. Su S, Panmanee W, Wilson JJ et al (2014) Catalase (KatA) plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa. PLoS One 9:e91813.  https://doi.org/10.1371/journal.pone.0091813 CrossRefGoogle Scholar
  44. Tharmalingam S, Alhasawi A, Appanna VP et al (2017) Reactive nitrogen species (RNS)-resistant microbes: adaptation and medical implications. Biol Chem 398:1193–1208.  https://doi.org/10.1515/hsz-2017-0152 CrossRefGoogle Scholar
  45. Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378.  https://doi.org/10.1104/pp.106.079467 CrossRefGoogle Scholar
  46. Tribelli PM, Méndez BS, López NI (2010) Oxygen-sensitive global regulator, Anr, is involved in the biosynthesis of poly(3-hydroxybutyrate) in Pseudomonas extremaustralis. J Mol Microbiol Biotechnol 19:180–188.  https://doi.org/10.1159/000320261 CrossRefGoogle Scholar
  47. Tribelli PM, Raiger Iustman LJ, Catone MV et al (2012) Genome sequence of the polyhydroxybutyrate producer Pseudomonas extremaustralis, a highly stress-resistant Antarctic bacterium. J Bacteriol 194:2381–2382.  https://doi.org/10.1128/JB.00172-12 CrossRefGoogle Scholar
  48. Tribelli PM, Hay AG, López NI (2013a) The global anaerobic regulator Anr, is involved in cell attachment and aggregation influencing the first stages of biofilm development in Pseudomonas extremaustralis. PLoS One 8:e76685.  https://doi.org/10.1371/journal.pone.0076685 CrossRefGoogle Scholar
  49. Tribelli PM, Nikel PI, Oppezzo OJ, López NI (2013b) Anr, the anaerobic global regulator, modulates the redox state and oxidative stress resistance in Pseudomonas extremaustralis. Microbiology 159:259–268.  https://doi.org/10.1099/mic.0.061085-0 CrossRefGoogle Scholar
  50. Tribelli PM, Solar Venero EC, Ricardi MM et al (2015) Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the antarctic bacterium Pseudomonas extremaustralis. PLoS One 10:e0145353.  https://doi.org/10.1371/journal.pone.0145353 CrossRefGoogle Scholar
  51. Trunk K, Benkert B, Quäck N et al (2010) Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons. Environ Microbiol 12:1719–1733.  https://doi.org/10.1111/j.1462-2920.2010.02252.x CrossRefGoogle Scholar
  52. Tunchai M, Hida A, Oku S et al (2017) Negative chemotaxis of Ralstonia pseudosolanacearum to maleate and identification of the maleate chemosensory protein. J Biosci Bioeng 124:647–652.  https://doi.org/10.1016/j.jbiosc.2017.07.002 CrossRefGoogle Scholar
  53. Wang X, Preston JF, Romeo T (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186:2724–2734CrossRefGoogle Scholar
  54. Zhao X, Drlica K (2014) Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol 21:1–6.  https://doi.org/10.1016/j.mib.2014.06.008 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Esmeralda C. Solar Venero
    • 1
  • Martiniano M. Ricardi
    • 2
  • María Gomez-Lozano
    • 3
  • Søren Molin
    • 3
  • Paula M. Tribelli
    • 1
    • 4
    Email author
  • Nancy I. López
    • 1
    • 4
    Email author
  1. 1.IQUIBICEN-CONICETBuenos AiresArgentina
  2. 2.Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
  4. 4.Departamento de Química Biológica, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations