, Volume 23, Issue 5, pp 495–506 | Cite as

Structural determinants increasing flexibility confer cold adaptation in psychrophilic phosphoglycerate kinase

  • David Mandelman
  • Lionel Ballut
  • David A. Wolff
  • Georges Feller
  • Charles Gerday
  • Richard Haser
  • Nushin AghajariEmail author
Original Paper


Crystal structures of phosphoglycerate kinase (PGK) from the psychrophile Pseudomonas sp. TACII 18 have been determined at high resolution by X-ray crystallography methods and compared with mesophilic, thermophilic and hyperthermophilic counterparts. PGK is a two-domain enzyme undergoing large domain movements to catalyze the production of ATP from 1,3-biphosphoglycerate and ADP. Whereas the conformational dynamics sustaining the catalytic mechanism of this hinge-bending enzyme now seems rather clear, the determinants which underlie high catalytic efficiency at low temperatures of this psychrophilic PGK were unknown. The comparison of the three-dimensional structures shows that multiple (global and local) specific adaptations have been brought about by this enzyme. Together, these reside in an overall increased flexibility of the cold-adapted PGK thereby allowing a better accessibility to the active site, but also a potentially more disordered transition state of the psychrophilic enzyme, due to the destabilization of some catalytic residues.


Phosphoglycerate kinase Psychrophile Enzyme Hinge bending Pseudomonas sp. TACII 18 Cold adaptation 



Phosphoglycerate kinase






Adenylyl imidophosphate



This work was supported by the Centre National de la Recherche Scientifique, by the European Union under the form of a TMR contract CT970131 (ColdNet), and by the Fonds National de la Recherche Scientifique, Belgium (Grants to GF and CG).

Supplementary material

792_2019_1102_MOESM1_ESM.pdf (666 kb)
Supplementary material 1 (PDF 667 kb)


  1. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68:352–367CrossRefGoogle Scholar
  2. Aghajari N, Feller G, Gerday C, Haser R (1998) Structures of the psychrophilic Alteromonas haloplanctis α-amylase give insights into cold adaptation at a molecular level. Structure 6:1503–1516CrossRefGoogle Scholar
  3. Aghajari N, Van Petegem F, Villeret V, Chessa JP, Gerday C, Haser R, Van Beeumen J (2003) Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases. Proteins 50:636–647CrossRefGoogle Scholar
  4. Auerbach G, Huber R, Grattinger M, Zaiss K, Schurig H, Jaenicke R, Jacob U (1997) Closed structure of phosphoglycerate kinase from Thermotoga maritima reveals the catalytic mechanism and determinants of thermal stability. Structure 5:1475–1483CrossRefGoogle Scholar
  5. Baldwin E, Xu J, Hajiseyedjavadi O, Baase WA, Matthews BW (1996) Thermodynamic and structural compensation in “size-switch” core repacking variants of bacteriophage T4 lysozyme. J Mol Biol 259:542–559CrossRefGoogle Scholar
  6. Banks RD, Blake CCF, Evans PR, Haser R, Rice DW, Hardy GW, Merrett M, Phillips AW (1979) Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme. Nature 279:773–777CrossRefGoogle Scholar
  7. Bentahir M, Feller G, Aittaleb M, Lamotte-Brasseur J, Himri T, Chessa JP, Gerday C (2000) Structural, kinetic, and calorimetric characterization of the cold-active phosphoglycerate kinase from the antarctic Pseudomonas sp. TACII18. J Biol Chem 275:11147–11153CrossRefGoogle Scholar
  8. Bernstein BE, Hol WGJ (1997) Crystal structures of substrates and products bound to the phosphoglycerate kinase active site reveal the catalytic mechanism. Biochemistry 37:4429–4436CrossRefGoogle Scholar
  9. Bernstein BE, Williams DM, Bressi JC, Kuhn P, Gelb MH, Blackburn GM, Hol WGJ (1998) A bisubstrate analog induces unexpected conformational changes in phosphoglycerate kinase from Trypanosoma brucei. J Mol Biol 279:1137–1148CrossRefGoogle Scholar
  10. Brünger AT (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–475CrossRefGoogle Scholar
  11. Burley SK, Petsko GA (1985) Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229:23–28CrossRefGoogle Scholar
  12. Cliff MJ, Bowler MW, Varga A, Marston JP, Szabo J, Hounslow AM, Baxter NJ, Blackburn GM, Vas M, Waltho JP (2010) Transition state analogue structures of human phosphoglycerate kinase establish the importance of charge balance in catalysis. J Am Chem Soc 132:6507–6516CrossRefGoogle Scholar
  13. Combet C, Blanchet C, Geourjon C, Deleage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25:147–150CrossRefGoogle Scholar
  14. Creighton TE (1991) Stability of folded conformations. Curr Opin Struct Biol 1:5–16CrossRefGoogle Scholar
  15. Davies GJ, Gamblin SJ, Littlechild JA, Watson HC (1993) The structure of a thermally stable 3-phosphoglycerate kinase and a comparison with its mesophilic equivalent. Proteins 15:283–289CrossRefGoogle Scholar
  16. DeLano WL (2002) PyMOL. DeLano scientific, San Carlos, p 700Google Scholar
  17. Dill KA (1990) The meaning of hydrophobicity. Science 250:297–298CrossRefGoogle Scholar
  18. Emsley P, Lohkamp B, Scott WG, Cowtan G (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501CrossRefGoogle Scholar
  19. Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica (Cairo), 512840Google Scholar
  20. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208CrossRefGoogle Scholar
  21. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107CrossRefGoogle Scholar
  22. Harlos K, Vas M, Blake CFF (1992) Crystal structure of the binary complex of pig muscle phosphoglycerate kinase and its substrate 3-phospho-D-glycerate. Proteins 12:133–144CrossRefGoogle Scholar
  23. Hess D, Kruger K, Knappik A, Palm P, Hensel R (1995) Dimeric 3-phosphoglycerate kinases from hyperthermophilic Archaea. Cloning, sequencing and expression of the 3-phosphoglycerate kinase gene of Pyrococcus woesei in Escherichia coli and characterization of the protein. Structural and functional comparison with the 3-phosphoglycerate kinase of Methanothermus fervidus. Eur J Biochem 233:227–237CrossRefGoogle Scholar
  24. Inoue R, Biehl R, Rosenkranz T, Fitter J, Monkenbush M, Radulescu A, Farago B, Richter D (2010) Large domain fluctuations on 50-ns timescale enable catalytic activity in phosphoglycerate kinase. Biophys J 99:2309–2317CrossRefGoogle Scholar
  25. Jaenicke R (1990) Protein structure and function at low temperatures. Philos Trans R Soc Lond B Biol Sci 326:535–551CrossRefGoogle Scholar
  26. Jaenicke R, Bohm G (1998) The stability of proteins in extreme environments. Curr Opin Struct Biol 8:738–748CrossRefGoogle Scholar
  27. Jones CE, Fleming TM, Cowan DA, Littlechild JA, Piper PW (1995) The phosphoglycerate kinase and glyceraldehyde-3-phosphate dehydrogenase genes from the thermophilic archaeon Sulfolobus solfataricus overlap by 8-bp. Isolation, sequencing of the genes and expression in Escherichia coli. Eur J Biochem 233:800–808CrossRefGoogle Scholar
  28. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637CrossRefGoogle Scholar
  29. Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60:2256–2268CrossRefGoogle Scholar
  30. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291CrossRefGoogle Scholar
  31. Low PS, Bada JL, Somero GN (1973) Temperature adaptation of enzymes: roles of the free energy, the enthalpy, and the entropy of activation. Proc Natl Acad Sci U S A 70:430–432CrossRefGoogle Scholar
  32. Mandelman D, Bentahir M, Feller G, Gerday C, Haser R (2001) Crystallization and preliminary X-ray analysis of a bacterial psychrophilic enzyme, phosphoglycerate kinase. Acta Crystallogr D Biol Crystallogr 257:1666–1668CrossRefGoogle Scholar
  33. Marston JP, Cliff MJ, Reed MAC, Blackburn GM, Hounslow AM, Craven CJ, Waltho JP (2010) Structural tightening and interdomain communication in the catalytic cycle of phosphoglycerate kinase. J Mol Biol 396:345–360CrossRefGoogle Scholar
  34. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497CrossRefGoogle Scholar
  35. McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793CrossRefGoogle Scholar
  36. Mykytczuk NC, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG (2013) Bacterial growth at −15 degrees C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7:1211–1226CrossRefGoogle Scholar
  37. Navaza J (2001) Implementation of molecular replacement in AMoRe. Acta Crystallogr D Biol Crystallogr 57:1367–1372CrossRefGoogle Scholar
  38. Nicholls AJ (1993) GRASP: graphical representation and analysis of surface properties. Biophys J 64:A116Google Scholar
  39. Otwinoswki Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326CrossRefGoogle Scholar
  40. Parker MJ, Spencer J, Jackson GS, Burston SG, Hosszu LLP, Craven CJ, Waltho JP, Clarke AR (1996) Domain behaviour during the folding of a thermostable phosphoglycerate kinase. Biochemistry 35:15740–15752CrossRefGoogle Scholar
  41. Privalov L, Gill SJ (1988) Stability of protein structure and hydrophobic interaction. Adv Protein Chem 39:191–234CrossRefGoogle Scholar
  42. Ramakrishnan C, Ramachandran GN (1965) Stereochemical criteria for polypeptide and protein chain conformations. Biophys J 5:909–933CrossRefGoogle Scholar
  43. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324CrossRefGoogle Scholar
  44. Russell RJ, Gerike U, Danson MJ, Hough DW, Taylor GL (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6:351–361CrossRefGoogle Scholar
  45. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433CrossRefGoogle Scholar
  46. Smalås AO, Leiros HK, Os V, Willassen NP (2000) Cold adapted enzymes. Biotechnol Annu Rev 6:1–57CrossRefGoogle Scholar
  47. Srere PA (1987) Complexes of sequential metabolic enzymes. Annu Rev Biochem 56:89–124CrossRefGoogle Scholar
  48. Srivastava DK, Bernhard SA (1986) Metabolite transfer via enzyme–enzyme complexes. Science 234:1081–1086CrossRefGoogle Scholar
  49. Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13:11643–11665CrossRefGoogle Scholar
  50. Sukenik S, Ren P, Gruebele M (2017) Weak protein-protein interactions in live cells are quantified by cell-volume modulation. PNAS 114:6776–6781Google Scholar
  51. Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954CrossRefGoogle Scholar
  52. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  53. Tina KG, Bhadra R, Srinivasan N (2007) PIC: protein Interactions Calculator. Nucleic Acid Res 35:W473–W476CrossRefGoogle Scholar
  54. Tomokuni Y, Goryo K, Katsura A, Torii S, Yasumoto K, Kemnitz K, Takada M, Fukumura H, Sogawa K (2010) Loose interaction between glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase revealed by fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy in living cells. FEBS J 277:1310–1318CrossRefGoogle Scholar
  55. Van Dijk E, Varilly P, Knowles TPJ, Frenkel D, Abeln S (2016) Consistent treatment of hydrophobicity in protein lattice models accounts for cold denaturation. Phys Rev Lett 116:078101CrossRefGoogle Scholar
  56. Watanabe K, Hata Y, Kizaki H, Katsube Y, Suzuki Y (1997) The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 Å resolution: structural characterization of proline substitution sites for protein stabilization. J Mol Biol 269:142–153CrossRefGoogle Scholar
  57. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242CrossRefGoogle Scholar
  58. Yip KSP, Stillman TJ, Britton KL, Artymiuk PJ, Baker PJ, Sedelnikova SE, Engel PC, Pasquo A, Chiaraluce R, Consalvi V, Scandurra R, Rice DW (1995) The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 3:1147–1158CrossRefGoogle Scholar
  59. Zecchinon L, Oriol A, Netzel U, Svennberg J, Gerardin-Otthiers N, Feller G (2005) Stability domains, substrate-induced conformational changes, and hinge-bending motions in a psychrophilic phosphoglycerate kinase. A microcalorimetric study. J Biol Chem 280:41307–41314CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biocrystallography and Structural Biology of Therapeutic Targets, Molecular Microbiology and Structural BiochemistryUMR 5086, CNRS, University of Lyon 1Lyon Cedex 07France
  2. 2.Laboratory of Biochemistry, Center for Protein Engineering - InBioS, Institute of Chemistry B6aUniversity of LiègeLiègeBelgium

Personalised recommendations