Advertisement

Extremophiles

, Volume 23, Issue 4, pp 487–494 | Cite as

Lipids and soluble carbohydrates in the mycelium and ascomata of alkaliphilic fungus Sodiomyces alkalinus

  • Maria V. Kozlova
  • Elena A. Ianutsevich
  • Olga A. Danilova
  • Olga V. Kamzolkina
  • Vera M. TereshinaEmail author
Original Paper
  • 44 Downloads

Abstract

Alkaliphilic fungi are fundamentally different from alkalitolerant ones in terms of mechanisms of adaptation. They accumulate trehalose in cytosol and phosphatidic acids (PA) in the membrane lipids, whereas alkalitolerants contain these compounds in low amounts. But it is unclear how the composition of osmolytes and lipids changes during cytodifferentiation. In this article the composition of lipids and soluble cytosol carbohydrates in the mycelium and fruit bodies of the alkaliphilic fungus Sodiomyces alkalinus was studied. In the mycelium, mannitol and trehalose dominated, while in fruit bodies only trehalose was predominant. Phosphatidylcholines (PC), PA and sterols were major membrane lipids of the mycelium, while PC and sterols were predominant in fruit bodies. The degree of fatty acids unsaturation of the main mycelium phospholipids (PC and PA) increased with age, while that of PC did not change regardless of the developmental stage. In young mycelium, storage lipids were represented mainly by free fatty acids, and in mature mycelium and fruit bodies—by triacylglycerols. Fruit bodies contained three times less membrane lipids and twice as many storage lipids as mycelium. Trehalose was the main cytosol carbohydrate in the mycelium and fruit bodies, which confirms its key value for alkaliphily.

Keywords

Alkaliphilic fungi Sodiomyces alkalinus Membrane lipids Osmolytes Trehalose 

Abbreviations

CL

Cardiolipins

DAG

Diacylglycerols

DoU

Degree of unsaturation

FFA

Free fatty acids

HS

Heat shock

LPE

Lysophosphatidylethanolamines

PA

Phosphatidic acids

PC

Phosphatidylcholines

PE

Phosphatidylethanolamines

PI

Phosphatidylinositols

PS

Phosphatidylserines

SL

Sphingolipids

St

Sterols

TAG

Triacylglycerols

Notes

Acknowledgements

The study was partially supported by the Russian Foundation for Basic Research (project 18-04-00488).

References

  1. Alvarez FJ, Douglas LM, Konopka JB (2007) Sterol-rich plasma membrane domains in fungi. Eukaryot Cell 6:755–763.  https://doi.org/10.1128/EC.00008-07 CrossRefGoogle Scholar
  2. Balogh G, Péter M, Glatz A, Gombos I, Török Z, Horváth I, Harwood JL, Vigh L (2013) Key role of lipids in heat stress management. FEBS Lett 587:1970–1980.  https://doi.org/10.1016/j.febslet.2013.05.016 CrossRefGoogle Scholar
  3. Barrera CR (1986) Formation and germination of fungal arthroconidia. Crit Rev Microbiol 12:271–292CrossRefGoogle Scholar
  4. Bilanenko E, Sorokin D, Georgieva M, Kozlova M (2005) Heleococcum alkalinum, a new alkalitolerant ascomycete from saline soda soils. Mycotaxon 91:497–507Google Scholar
  5. Bondarenko SA, Ianutsevich EA, Danilova OA, Grum-Grzhimaylo AA, Kotlova ER, Kamzolkina OV, Bilanenko EN, Tereshina VM (2017) Membrane lipids and soluble sugars dynamics of the alkaliphilic fungus Sodiomyces tronii in response to ambient pH. Extremophiles 21:743–754.  https://doi.org/10.1007/s00792-017-0940-4 CrossRefGoogle Scholar
  6. Bondarenko SA, Ianutsevich EA, Sinitsyna NA, Georgieva ML, Bilanenko EN, Tereshina VM (2018) Dynamics of the cytosol soluble carbohydrates and membrane lipids in response to ambient pH in alkaliphilic and alkalitolerant fungi. Microbiology 87:21–32.  https://doi.org/10.1134/S0026261718010034 CrossRefGoogle Scholar
  7. Crowe JH (2007) Trehalose as a “chemical chaperone”: fact and fantasy. Adv Exp Med Biol 594:143–158.  https://doi.org/10.1007/978-0-387-39975-1_13 CrossRefGoogle Scholar
  8. Csoboz B, Balogh GE, Kusz E, Gombos I, Peter M, Crul T, Gungor B, Haracska L, Bogdanovics G, Torok Z, Horvath I, Vigh L (2013) Membrane fluidity matters: hyperthermia from the aspects of lipids and membranes. Int J Hyperth 29:491–499.  https://doi.org/10.3109/02656736.2013.808765 CrossRefGoogle Scholar
  9. Dahl C, Dahl J (1988) Cholesterol and cell function. CRC Press Inc., Boca RatonGoogle Scholar
  10. Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R.  https://doi.org/10.1093/glycob/cwg047 CrossRefGoogle Scholar
  11. Glatz A, Pilbat A, Németh GL, Vince-Kontár K, Jósvay K, Hunya Á, Udvardy A, Gombos I, Péter M, Balogh G, Horváth I, Vígh L, Török Z (2016) Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe. Cell Stress Chaperones 21:327–338.  https://doi.org/10.1007/s12192-015-0662-4 CrossRefGoogle Scholar
  12. Goodrich-Tanrikulu M, Howe K, Stafford A, Nelson MA (1998) Changes in fatty acid composition of Neurospora crassa accompany sexual development and ascospore germination. Microbiology 144:1713–1720.  https://doi.org/10.1099/00221287-144-7-1713 CrossRefGoogle Scholar
  13. Grum-Grzhimaylo AA, Debets AJM, van Diepeningen AD, Georgieva ML, Bilanenko EN (2013) Sodiomyces alkalinus, a new holomorphic alkaliphilic ascomycete within the Plectosphaerellaceae. Persoonia Mol Phylogeny Evol Fungi 31:147–158.  https://doi.org/10.3767/003158513X673080 CrossRefGoogle Scholar
  14. Grum-Grzhimaylo AA, Georgieva ML, Bondarenko SA, Debets AJM, Bilanenko EN (2016) On the diversity of fungi from soda soils. Fungal Divers 76:27–74.  https://doi.org/10.1007/s13225-015-0320-2 CrossRefGoogle Scholar
  15. Ianutsevich EA, Danilova OA, Groza NV, Tereshina VM (2016a) Membrane lipids and cytosol carbohydrates in Aspergillus niger under osmotic, oxidative, and cold impact. Microbiol (Russian Federation) 85:302–310.  https://doi.org/10.1134/S0026261716030152 Google Scholar
  16. Ianutsevich EA, Kotlova ER, Danilova OA, Tereshina VM, Groza NV (2016b) Heat shock response of thermophilic fungi: membrane lipids and soluble carbohydrates under elevated temperatures. Microbiology 162:989–999.  https://doi.org/10.1099/mic.0.000279 CrossRefGoogle Scholar
  17. Iturriaga G, Suárez R, Nova-Franco B (2009) Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci 10:3793–3810.  https://doi.org/10.3390/ijms10093793 CrossRefGoogle Scholar
  18. Jennings DH (1985) Polyol Metabolism in Fungi. Adv Microb Physiol 25:149–193.  https://doi.org/10.1016/S0065-2911(08)60292-1 CrossRefGoogle Scholar
  19. Kooijman EE, Chupin V, de Kruijff B, Burger KNJ (2003) Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4:162–174.  https://doi.org/10.1034/j.1600-0854.2003.00086.x CrossRefGoogle Scholar
  20. Kozlova MV (2006) Life cycle in a haloalkalitolerant ascomycete Heleococcum alkalinum Bilanenko et Ivanova/Zhiznenniy tsikl galoalkalotolerantnogo askomiceta Heleococcum alkalinum Bilanenko et Ivanova (Russian)/Dissertation, 03.02.12 (Mycology), p 210. Lomonosov Moscow State University, Biological Faculty, Moscow, RussiaGoogle Scholar
  21. Kozlova MV, Bilanenko EN, Grum-Grzhimaylo AA, Kamzolkina OV (2018) An unusual sexual stage in the alkalophilic ascomycete Sodiomyces alkalinus. Fungal Biol.  https://doi.org/10.1016/j.funbio.2018.11.010 Google Scholar
  22. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596.  https://doi.org/10.1038/nature04396 CrossRefGoogle Scholar
  23. Patel TK, Williamson JD (2016) Mannitol in plants, fungi, and plant–fungal interactions. Trends Plant Sci 21:486–497.  https://doi.org/10.1016/j.tplants.2016.01.006 CrossRefGoogle Scholar
  24. Rella A, Farnoud AM, Del Poeta M (2016) Plasma membrane lipids and their role in fungal virulence. Prog Lipid Res 61:63–72.  https://doi.org/10.1016/j.plipres.2015.11.003 CrossRefGoogle Scholar
  25. Rodrigues ML (2018) The multifunctional fungal ergosterol. MBio 9:1–5.  https://doi.org/10.1128/mBio.01755-18 CrossRefGoogle Scholar
  26. Rubio-Texeira M, Van Zeebroeck G, Thevelein JM (2016) 10 trehalose metabolism: enzymatic pathways and physiological functions. In: Hoffmeister D (ed) Biochemistry and molecular biology. Springer International Publishing, Cham, pp 191–277CrossRefGoogle Scholar
  27. Sussman AS, Halvorson HO (1966) Spores their dormancy and germination. Harper & Row, New York, p 354Google Scholar
  28. Tereshina VM, Memorskaia AS, Kochkina GA, Feofilova EP (2002) Dormant cells in the developmental cycle of Blakeslea trispora: distinct patterns of the lipid and carbohydrate composition. Mikrobiologiia 71:684–689.  https://doi.org/10.1023/A:1021432007070 Google Scholar
  29. Tereshina VM, Memorskaya AS, Kotlova ER (2011) The effect of different heat influences on composition of membrane lipids and cytosol carbohydrates in mycelial fungi. Microbiology 80:455–460.  https://doi.org/10.1134/S0026261711040199 CrossRefGoogle Scholar
  30. Turian G (1976) Spores in Ascomycetes, their controlled differentiation. In: Weber DJ, Hess WM (eds) The fungal spore. Form and function. Wiley, New York, pp 716–786Google Scholar
  31. Vigh L, Escribá PV, Sonnleitner A, Sonnleitner M, Piotto S, Maresca B, Horváth I, Harwood JL (2005) The significance of lipid composition for membrane activity: new concepts and ways of assessing function. Prog Lipid Res 44:303–344.  https://doi.org/10.1016/j.plipres.2005.08.001 CrossRefGoogle Scholar
  32. Weete JD, Abril M, Blackwell M (2010) Phylogenetic distribution of fungal sterols. PLoS One 5:e10899.  https://doi.org/10.1371/journal.pone.0010899 CrossRefGoogle Scholar
  33. Wyatt TT, van Leeuwen MR, Golovina EA, Hoekstra FA, Kuenstner EJ, Palumbo EA, Snyder NL, Visagie C, Verkennis A, Hallsworth JE, Wösten HAB, Dijksterhuis J (2015) Functionality and prevalence of trehalose-based oligosaccharides as novel compatible solutes in ascospores of Neosartorya fischeri (Aspergillus fischeri) and other fungi. Environ Microbiol 17:395–411.  https://doi.org/10.1111/1462-2920.12558 CrossRefGoogle Scholar
  34. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830.  https://doi.org/10.1242/jeb.01730 CrossRefGoogle Scholar
  35. Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Microbiology 68:503–521Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Zubov State Oceanographic InstituteMoscowRussian Federation
  2. 2.Winogradsky Institute of MicrobiologyResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussian Federation
  3. 3.Lomonosov Moscow State University, Faculty of BiologyMoscowRussian Federation

Personalised recommendations