, Volume 23, Issue 4, pp 451–460 | Cite as

Identification of a GntR family regulator BusRTha and its regulatory mechanism in the glycine betaine ABC transport system of Tetragenococcus halophilus

  • Jieting Lin
  • Yunfei Zhu
  • Hanlan Tang
  • Junwei Yan
  • Lixin LuoEmail author
Original Paper


Glycine betaine is one of the most effective compatible solutes of the halophilic lactic acid bacterium Tetragenococcus halophilus, the transportation of which is essential for its survival under salinity stress condition. In the current study, we attempted to define a glycine betaine ABC transporter system of T. halophilus, busATha, which plays an important role in adapting to salinity condition. The expression of busATha enhanced the growth of the recombinant strain under high salinity. BusRTha, a transcription regulator that represses the expression of busATha, was characterized, and the repression was abrogated under high salinity. The binding of the regulator was demonstrated through electrophoretic mobility shift assays, and the binding sites were characterized as 5′-AAA(T/G)TGAC(C/A)(G/A)T(C/A)C-3′. This is the first studied transcription regulator of T. halophilus, and our findings provide insights into the molecular mechanism of halophilic life and tools for further application of halophiles as chassis in industrial biotechnology.


Tetragenococcus halophilus Glycine betaine ABC transport system GntR family transcription regulators BusR 



This work was supported by the National Natural Science Foundation of China (Grant nos. 31771962, 31271924).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

792_2019_1096_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1194 kb)


  1. Baliarda A, Robert H, Jebbar M, Blanco C, Deschamps A, Marrec CL (2003) Potential osmoprotectants for the lactic acid bacteria Pediococcus pentosaceus and Tetragenococcus halophila. Int J Food Microbiol 84:13–20CrossRefGoogle Scholar
  2. Bouvier J, Bordes P, Romeo Y, Fourçans A, Bouvier I, Gutierrez C (2000) Characterization of OpuA, a glycine-betaine uptake system of Lactococcus lactis. J Mol Microbiol Biotechnol 2:199–205Google Scholar
  3. Commichau FM, Gibhardt J, Halbedel S, Gundlach J, Stülke J (2017) A delicate connection: c-di-AMP affects cell integrity by controlling osmolyte transport. Trends Microbiol 26:175–185CrossRefGoogle Scholar
  4. Devanthi PVP, Linforth R, Onyeaka H, Gkatzionis K (2018) Effects of co-inoculation and sequential inoculation of Tetragenococcus halophilus and Zygosaccharomyces rouxii on soy sauce fermentation. Food Chem 240:1–8CrossRefGoogle Scholar
  5. Devaux L et al (2018) Cyclic di-AMP regulation of osmotic homeostasis is essential in group B Streptococcus. PLoS Genet 14:e1007342CrossRefGoogle Scholar
  6. Fukuda D, Watanabe M, Sonezaki S, Sugimoto S, Sonomoto K, Ishizaki A (2002) Molecular characterization and regulatory analysis of dnaK operon of halophilic lactic acid bacterium Tetragenococcus halophila. J Biosci Bioeng 93:388–394CrossRefGoogle Scholar
  7. Gaugué I, Oberto J, Plumbridge J (2014) Regulation of amino sugar utilization in Bacillus subtilis by the GntR family regulators, NagR and GamR. Mol Microbiol 92:100–115CrossRefGoogle Scholar
  8. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345CrossRefGoogle Scholar
  9. Gürtler M, Gänzle MG, Wolf G, Hammes WP (1998) Physiological diversity among strains of Tetragenococcus halophilus. Syst Appl Microbiol 21:107–112CrossRefGoogle Scholar
  10. Hoskisson PA, Rigali S (2009) Variation in form and function: the helix-turn-helix regulators of the GntR superfamily. Adv Appl Microbiol 69:1–22CrossRefGoogle Scholar
  11. Kempf B, Bremer E (1995) OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. J Biol Chem 270:16701–16713CrossRefGoogle Scholar
  12. Krogh A, Larsson B, Gv Heijne, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580CrossRefGoogle Scholar
  13. Lee KE, Lee SM, Choi YH, Hurh BS, Kim YS (2013) Comparative volatile profiles in soy sauce according to inoculated microorganisms. Biosci Biotechnol Biochem 77:2192–2200CrossRefGoogle Scholar
  14. Lesnik EA, Sampath R, Levene HB, Henderson TJ, McNeil JA, Ecker DJ (2001) Prediction of rho-independent transcriptional terminators in Escherichia coli. Nucleic Acids Res 29:3583–3594CrossRefGoogle Scholar
  15. Lin J, Liang H, Yan J, Luo L (2017) The molecular mechanism and post-transcriptional regulation characteristic of Tetragenococcus halophilus acclimation to osmotic stress revealed by quantitative proteomics. J Proteomics 168:1–14CrossRefGoogle Scholar
  16. Liu L, Si L, Meng X, Luo L (2015) Comparative transcriptomic analysis reveals novel genes and regulatory mechanisms of Tetragenococcus halophilus in response to salt stress. J Ind Microbiol Biotechnol 42:601–616CrossRefGoogle Scholar
  17. Man JCD, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Microbiol 23:130–135Google Scholar
  18. McClure WR (1985) Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem 54:171–204CrossRefGoogle Scholar
  19. Obis D, Guillot A, Gripon J-C, Renault P, Bolotin A, Mistou M-Y (1999) Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters. J Bacteriol 181:6238–6246Google Scholar
  20. Onda T, Yanagida F, Uchimura T, Tsuji M, Ogino S, Shinohara T, Yokotsuka K (2002) Widespread distribution of the bacteriocin-producing lactic acid cocci in miso-paste products. J Appl Microbiol 92:695–705CrossRefGoogle Scholar
  21. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63CrossRefGoogle Scholar
  22. Pham HT et al (2018) Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant. PLoS Genet 14:e1007574CrossRefGoogle Scholar
  23. Qiao J, Huang S, Te R, Wang J, Chen L, Zhang W (2013) Integrated proteomic and transcriptomic analysis reveals novel genes and regulatory mechanisms involved in salt stress responses in Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 97:8253–8264CrossRefGoogle Scholar
  24. Resch M, Schiltz E, Titgemeyer F, Muller YA (2010) Insight into the induction mechanism of the GntR/HutC bacterial transcription regulator YvoA. Nucleic Acids Res 38:2485–2497CrossRefGoogle Scholar
  25. Rigali S, Derouaux A, Giannotta F, Dusart J (2001) Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 277:12507–12515CrossRefGoogle Scholar
  26. Rigali S, Schlicht M, Hoskisson P, Nothaft H, Merzbacher M, Joris B, Titgemeyer F (2004) Extending the classification of bacterial transcription factors beyond the helix-turn-helix motif as an alternative approach to discover new cis/trans relationships. Nucleic Acids Res 32:3418–3426CrossRefGoogle Scholar
  27. Robert H, Marrec CL, Blanco C, Jebbar M (2000) Glycine betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of Tetragenococcus halophila. Appl Environ Microbiol 66:509–517CrossRefGoogle Scholar
  28. Romeo Y, Bouvier J, Gutierrez C (2007) Osmotic regulation of transcription in Lactococcus lactis: ionic strength-dependent binding of the BusR repressor to the busA promoter. FEBS Lett 581:3387–3390CrossRefGoogle Scholar
  29. Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32:W321–W326CrossRefGoogle Scholar
  30. Sugimoto S, Nakayama J, Fukuda D, Sonezaki S, Watanabe M, Tosukhowong A, Sonomoto K (2003) Effect of heterologous expression of molecular chaperone DnaK from Tetragenococcus halophilus on salinity adaptation of Escherichia coli. J Biosci Bioeng 96:129–133CrossRefGoogle Scholar
  31. Sugimoto S, Yoshida H, Mizunoe Y, Tsuruno K, Nakayama J, Sonomoto K (2006) Structural and functional conversion of molecular chaperone ClpB from the gram-positive halophilic lactic acid bacterium Tetragenococcus halophilus mediated by ATP and stress. J Bacteriol 188:8070–8078CrossRefGoogle Scholar
  32. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  33. Udomsil N, Rodtong S, Choi YJ, Hua Y, Yongsawatdigul J (2011) Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation. J Agric Food Chem 59:8401–8408CrossRefGoogle Scholar
  34. Vindal V, Suma K, Ranjan A (2007) GntR family of regulators in Mycobacterium smegmatis: a sequence and structure based characterization. BMC Genomics 8:289CrossRefGoogle Scholar
  35. Wu K, Xu H, Zheng Y, Wang L, Zhang X, Yin Y (2016) CpsR, a GntR family regulator, transcriptionally regulates capsular polysaccharide biosynthesis and governs bacterial virulence in Streptococcus pneumoniae. Sci Rep 6:29255CrossRefGoogle Scholar
  36. Yu H, Meng X, Aflakpui FWK, Luo L (2016) A salt-induced butA gene of Tetragenococcus halophilus confers salt tolerance to Escherichia coli by heterologous expression of its dual copies. Ann Microbiol 66:727–736CrossRefGoogle Scholar
  37. Zhang X, Lin Y, Chen G-Q (2018) Halophiles as chassis for bioproduction. Adv Biosyst 2:1800088CrossRefGoogle Scholar
  38. Zheng M et al (2009) Structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+ -binding FCD domains. Acta Crystallogr Sect D Struct Biol 65:356–365CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Guangdong Provincial Key Laboratory of Fermentation and Enzyme EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations