Advertisement

Extremophiles

, Volume 23, Issue 4, pp 407–419 | Cite as

Identification of a novel esterase from the thermophilic bacterium Geobacillus thermodenitrificans NG80-2

  • Nicola Curci
  • Andrea Strazzulli
  • Federica De Lise
  • Roberta Iacono
  • Luisa Maurelli
  • Fabrizio Dal Piaz
  • Beatrice Cobucci-PonzanoEmail author
  • Marco Moracci
Original Paper
  • 98 Downloads

Abstract

In the framework of the discovery of new thermophilic enzymes of potential biotechnological interest, we embarked in the characterization of a new thermophilic esterase from the thermophilic bacterium Geobacillus thermodenitrificans. The phylogenetic analysis of the GTNG_0744 esterase indicated that the sequence belongs to the enterochelin/enterobactin esterase group, which have never been recognized as a family in the lipases/esterase classification. These enzymes catalyze the last step in the acquisition of environmental Fe3+ through siderophore hydrolysis. In silico analysis revealed, for the first time, that the machinery for the uptake of siderophores is present in G. thermodenitrificans. The purified recombinant enzyme, EstGtA3, showed different substrate specificity from known enterochelin/enterobactin esterases, recognizing short chain esters with a higher specificity constant for 4-NP caprylate. The enzyme does not require cofactors for its activity, is active in the pH range 7.0–8.5, has highest activity at 60 °C and is 100% stable when incubated for 16 h at 55 °C. DTT, β-mercaptoethanol and Triton X-100 have an activating effect on the enzymatic activity. Organic solvents have in general a negative effect on the enzyme, but n-hexane is a strong activator up to 150, making EstGtA3 a good candidate for applications in biotechnology.

Keywords

Esterase Bacterium Geobacillus Solvent tolerance Thermostability 

Abbreviations

4-NP

4-nitrophenyl

4-NPC12

4-nitrophenyl laurate

4-NPC2

4-nitrophenyl acetate

4-NPC4

4-nitrophenyl butyrate

4-NPC8

4-nitrophenyl caprylate

DTT

Dithiothreitol

DMF

Dimethylformamide

DMSO

Dimethyl sulfoxide

EDTA

Ethylenediaminetetraacetic acid

EstGtA3

esterase from G. thermodenitrificans NG80-2

EtOH

Ethanol

MeOH

Methanol

MES

2-(N-morpholino)ethanesulfonic acid

PMSF

phenylmethane sulfonyl fluoride

SDS–PAGE

Sodium Dodecyl Sulphate - PolyAcrylamide Gel Electrophoresis

SDS

Sodium Dodecyl Sulphate

TCV

inhibitor tris-catechol vector

Notes

Acknowledgements

We thank Francesco La Cara and collaborators at the Research Institute on Terrestrial Ecosystems (IRET) from the National Research Council of Italy for the gift of Geobacillus thermodenitrificans NG80-2 genome. We are grateful to Chiara Nobile and Marco Petruzziello at the Institute of Biosciences and BioResources (IBBR) from the National Research Council of Italy for administrative and technical assistance. This work was supported by a grant from the Italian Ministry of Research (MIUR) PON03PE_00107_1 BIOPOLIS.

Supplementary material

792_2019_1093_MOESM1_ESM.pdf (745 kb)
Supplementary material 1 (PDF 745 kb)
792_2019_1093_MOESM2_ESM.xlsx (17 kb)
Supplementary material 2 (XLXS 17 kb)
792_2019_1093_MOESM3_ESM.pdf (100 kb)
Supplementary material 3 (PDF 100 kb)

References

  1. Abergel RJ, Zawadzka AM, Hoette TM, Raymond KN (2009) Enzymatic hydrolysis of trilactone siderophores: where chiral recognition occurs in enterobactin and bacillibactin iron transport. J Am Chem Soc 131:12682–12692.  https://doi.org/10.1021/ja903051q CrossRefGoogle Scholar
  2. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201.  https://doi.org/10.1093/bioinformatics/bti770 CrossRefGoogle Scholar
  3. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343(Pt 1):177–183CrossRefGoogle Scholar
  4. Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. Fems Microbiol Rev 26:73–81.  https://doi.org/10.1111/j.1574-6976.2002.tb00599.x CrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  6. Castilla A, Panizza P, Rodriguez D, Bonino L, Diaz P, Irazoqui G, Rodriguez Giordano S (2017) A novel thermophilic and halophilic esterase from Janibacter sp. R02, the first member of a new lipase family (Family XVII). Enzyme Microb Technol 98:86–95.  https://doi.org/10.1016/j.enzmictec.2016.12.010 CrossRefGoogle Scholar
  7. Charbonneau DM, Meddeb-Mouelhi F, Beauregard M (2010) A novel thermostable carboxylesterase from Geobacillus thermodenitrificans: evidence for a new carboxylesterase family. J Biochem 148:299–308.  https://doi.org/10.1093/jb/mvq064 CrossRefGoogle Scholar
  8. Chenault SS, Earhart CF (1991) Organization of genes encoding membrane proteins of the Escherichia coli ferrienterobactin permease. Mol Microbiol 5:1405–1413CrossRefGoogle Scholar
  9. Cobucci-Ponzano B, Aurilia V, Riccio G, Henrissat B, Coutinho PM, Strazzulli A, Padula A, Corsaro MM, Pieretti G, Pocsfalvi G, Fiume I, Cannio R, Rossi M, Moracci M (2010) A New Archaeal beta-Glycosidase from Sulfolobus solfataricus seeding a novel retaining beta-glycan-specific glycoside hydrolase family along with the human non-lysosomal glucosylceramidase gba2. J Biol Chem 285:20691–20703.  https://doi.org/10.1074/jbc.M109.086470 CrossRefGoogle Scholar
  10. Cobucci-Ponzano B, Conte F, Strazzulli A, Capasso C, Fiume I, Pocsfalvi G, Rossi M, Moracci M (2010) The molecular characterization of a novel GH38 alpha-mannosidase from the crenarchaeon Sulfolobus solfataricus revealed its ability in de-mannosylating glycoproteins. Biochimie 92:1895–1907.  https://doi.org/10.1016/j.biochi.2010.07.016 CrossRefGoogle Scholar
  11. Cobucci-Ponzano B, Zorzetti C, Strazzulli A, Carillo S, Bedini E, Corsaro MM, Comfort DA, Kelly RM, Rossi M, Moracci M (2011) A novel alpha-d-galactosynthase from Thermotoga maritima converts beta-d-galactopyranosyl azide to alpha-galacto-oligosaccharides. Glycobiology 21:448–456.  https://doi.org/10.1093/glycob/cwq177 CrossRefGoogle Scholar
  12. Cobucci-Ponzano B, Perugino G, Strazzulli A, Rossi M, Moracci M (2012) Thermophilic glycosynthases for oligosaccharides synthesis. Methods Enzymol 510:273–300.  https://doi.org/10.1016/B978-0-12-415931-0.00015-X CrossRefGoogle Scholar
  13. Cobucci-Ponzano B, Strazzulli A, Iacono R, Masturzo G, Giglio R, Rossi M, Moracci M (2015) Novel thermophilic hemicellulases for the conversion of lignocellulose for second generation biorefineries. Enzyme Microb Tech doi:10.1016/j.enzmictec.2015.06.014Google Scholar
  14. De Santi C, Tedesco P, Ambrosino L, Altermark B, Willassen NP, de Pascale D (2014) A new alkaliphilic cold-active esterase from the psychrophilic marine bacterium Rhodococcus sp.: functional and structural studies and biotechnological potential. Appl Biochem Biotechnol. 172:3054–3068.  https://doi.org/10.1007/s12010-013-0713-1 CrossRefGoogle Scholar
  15. Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119.  https://doi.org/10.1016/j.mib.2015.05.011 CrossRefGoogle Scholar
  16. Huang J, Zhang Y, Hu Y (2016) Functional Characterization of a Marine Bacillus Esterase and its Utilization in the Stereo-Selective Production of D-Methyl Lactate. Appl Biochem Biotechnol 180:1467–1481.  https://doi.org/10.1007/s12010-016-2180-y CrossRefGoogle Scholar
  17. Iacono R, Cobucci-Ponzano B, Strazzulli A, Giglio R, Maurelli L, Moracci M (2016) (Hyper)thermophilic biocatalysts for second generation biorefineries. Chem Today 34:4Google Scholar
  18. Iacono R, Strazzulli A, Maurelli L, Curci N, Casillo A, Corsaro MM, Moracci M, Cobucci-Ponzano B (2019) GlcNAc De-N-Acetylase from the Hyperthermophilic Archaeon Sulfolobus solfataricus. Applied and Environmental Microbiology 85 doi:10.1128/AEM.01879–18Google Scholar
  19. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397CrossRefGoogle Scholar
  20. Jain I, Kumar V, Satyanarayana T (2014) Applicability of recombinant beta-xylosidase from the extremely thermophilic bacterium Geobacillus thermodenitrificans in synthesizing alkylxylosides. Bioresour Technol 170:462–469.  https://doi.org/10.1016/j.biortech.2014.07.113 CrossRefGoogle Scholar
  21. Jayanath G, Mohandas SP, Kachiprath B, Solomon S, Sajeevan TP, Bright Singh IS, Philip R (2018) A novel solvent tolerant esterase of GDSGG motif subfamily from solar saltern through metagenomic approach: Recombinant expression and characterization. Int J Biol Macromol 119:393–401.  https://doi.org/10.1016/j.ijbiomac.2018.06.057 CrossRefGoogle Scholar
  22. Kanamori Y, Watanabe M, Kawauchi K, Chen Y-G, Yanagishita H, Hirata H (2005) Kinetic Resolution of Enantiomers in Racemic and Enantiomerically Enriched 2-Alkanols by Pseudomonas cepacia Lipase Catalyzed Transesterification with Isopropenyl Acetate in Organic Solvent vol 54. doi:10.5650/jos.54.21,Google Scholar
  23. Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator—Siderophore: a review. Microbiol Res 212–213:103–111.  https://doi.org/10.1016/j.micres.2017.10.012 CrossRefGoogle Scholar
  24. Kim J, Kim S, Yoon S, Hong E, Ryu Y (2015) Improved enantioselectivity of thermostable esterase from Archaeoglobus fulgidus toward (S)-ketoprofen ethyl ester by directed evolution and characterization of mutant esterases. Appl Microbiol Biotechnol 99:6293–6301.  https://doi.org/10.1007/s00253-015-6422-7 CrossRefGoogle Scholar
  25. Kumagai PS, Gutierrez RF, Lopes JLS, Martins JM, Jameson D, Castro AM, Martins LF, DeMarco R, Bossolan NRS, Wallace BA, Araujo APU (2018) Characterization of esterase activity from an Acetomicrobium hydrogeniformans enzyme with high structural stability in extreme conditions. Extremophiles: Life Under Extreme Conditions 22:781–793.  https://doi.org/10.1007/s00792-018-1038-3 CrossRefGoogle Scholar
  26. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  27. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) Procheck—a Program to Check the Stereochemical Quality of Protein Structures. J Appl Crystallogr 26:283–291.  https://doi.org/10.1107/S0021889892009944 CrossRefGoogle Scholar
  28. Levisson M, van der Oost J, Kengen SWM (2007) Characterization and structural modeling of a new type of thermostable esterase from Thermotoga maritima. Febs J 274:2832–2842.  https://doi.org/10.1111/j.1742-4658.2007.05817.x CrossRefGoogle Scholar
  29. Levisson M, van der Oost J, Kengen SWM (2009) Carboxylic ester hydrolases from hyperthermophiles. Extremophiles: Life Under Extreme Conditions 13:567–581.  https://doi.org/10.1007/s00792-009-0260-4 CrossRefGoogle Scholar
  30. Li WQ, Shi H, Ding HH, Wang LL, Zhang Y, Li X, Wang F (2018) Characterization of two novel thermostable esterases from Thermoanaerobacterium thermosaccharolyticum. Protein Expres Purif 152:64–70.  https://doi.org/10.1016/j.pep.2018.04.010 CrossRefGoogle Scholar
  31. Li X, Yu H (2015) Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol 59(6):455–63. doi: 10.1007/s12223–014–0320–8Google Scholar
  32. Lin H, Fischbach MA, Liu DR, Walsh CT (2005) In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J Am Chem Soc 127:11075–11084.  https://doi.org/10.1021/ja0522027 CrossRefGoogle Scholar
  33. López-López O, Cerdán ME, González Siso MI (2014) New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sc 15:445–455CrossRefGoogle Scholar
  34. Manachini PL, Mora D, Nicastro G, Parini C, Stackebrandt E, Pukall R, Fortina MG (2000) Bacillus thermodenitrificans sp. nov., nom. rev. International journal of systematic and evolutionary microbiology 50 Pt 3:1331–1337 doi:10.1099/00207713–50–3–1331Google Scholar
  35. Marcolongo L, La Cara F, Morana A, Di Salle A, Del Monaco G, Paixao SM, Alves L, Ionata E (2015) Properties of an alkali-thermo stable xylanase from Geobacillus thermodenitrificans A333 and applicability in xylooligosaccharides generation. World J Microbiol Biotechnol 31:633–648.  https://doi.org/10.1007/s11274-015-1818-1 CrossRefGoogle Scholar
  36. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. Int J Syst Evolut Microbiol 51:433–446.  https://doi.org/10.1099/00207713-51-2-433 CrossRefGoogle Scholar
  37. Ollinger J, Song KB, Antelmann H, Hecker M, Helmann JD (2006) Role of the Fur regulon in iron transport in Bacillus subtilis. J Bacteriol 188:3664–3673.  https://doi.org/10.1128/JB.188.10.3664-3673.2006 CrossRefGoogle Scholar
  38. Pereira MR, Maester TC, Mercaldi GF, de Macedo Lemos EG, Hyvonen M, Balan A (2017) From a metagenomic source to a high-resolution structure of a novel alkaline esterase. Appl Microbiol Biotechnol 101:4935–4949.  https://doi.org/10.1007/s00253-017-8226-4 CrossRefGoogle Scholar
  39. Perraud Q, Moynie L, Gasser V, Munier M, Godet J, Hoegy F, Mely Y, Mislin GLA, Naismith JH, Schalk IJ (2018) A Key Role for the Periplasmic PfeE Esterase in Iron Acquisition via the Siderophore Enterobactin in Pseudomonas aeruginosa. Acs Chem Biol 13:2603–2614.  https://doi.org/10.1021/acschembio.8b00543 CrossRefGoogle Scholar
  40. Ramnath L, Sithole B, Govinden R (2017) Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol 63:179–192.  https://doi.org/10.1139/cjm-2016-0447 CrossRefGoogle Scholar
  41. Ranjan R, Yadav MK, Suneja G, Sharma R (2018) Discovery of a diverse set of esterases from hot spring microbial mat and sea sediment metagenomes. Int J Biol Macromol 119:572–581.  https://doi.org/10.1016/j.ijbiomac.2018.07.170 CrossRefGoogle Scholar
  42. Samoylova YV, Sorokina KN, Romanenko MV, Parmon VN (2018) Cloning, expression and characterization of the esterase estUT1 from Ureibacillus thermosphaericus which belongs to a new lipase family XVIII. Extremophiles : life under extreme conditions 22:271–285.  https://doi.org/10.1007/s00792-018-0996-9 CrossRefGoogle Scholar
  43. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539.  https://doi.org/10.1038/msb.2011.75 CrossRefGoogle Scholar
  44. Sirec T, Strazzulli A, Isticato R, De Felice M, Moracci M, Ricca E (2012) Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis. Microb Cell Fact 11:100.  https://doi.org/10.1186/1475-2859-11-100 CrossRefGoogle Scholar
  45. Strazzulli A, Cobucci-Ponzano B, Carillo S, Bedini E, Corsaro MM, Pocsfalvi G, Withers SG, Rossi M, Moracci M (2017) Introducing transgalactosylation activity into a family 42 beta-galactosidase. Glycobiology 27:425–437.  https://doi.org/10.1093/glycob/cwx013 CrossRefGoogle Scholar
  46. Strazzulli A, Fusco S, Cobucci-Ponzano B, Moracci M, Contursi P (2017) Metagenomics of microbial and viral life in terrestrial geothermal environments. Rev Environ Sci Bio 16:425–454.  https://doi.org/10.1007/s11157-017-9435-0 CrossRefGoogle Scholar
  47. Strazzulli A, Iacono R, Giglio R, Moracci M, Cobucci-Ponzano B (2017c) Metagenomics of hyperthermophilic environments: Biodiversity and biotechnology. In: Microbial Ecology of Extreme Environments. pp 103–135. doi:10.1007/978–3–319–51686–8_5Google Scholar
  48. Wang L, Tang Y, Wang S, Liu RL, Liu MZ, Zhang Y, Liang FL, Feng L (2006) Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles : life under extreme conditions 10:347–356.  https://doi.org/10.1007/s00792-006-0505-4 CrossRefGoogle Scholar
  49. Yang Z, Zhang Y, Shen T, Xie Y, Mao Y, Ji C (2013) Cloning, expression and biochemical characterization of a novel, moderately thermostable GDSL family esterase from Geobacillus thermodenitrificans T2. J Biosci Bioeng 115:133–137.  https://doi.org/10.1016/j.jbiosc.2012.08.016 CrossRefGoogle Scholar
  50. Yang X, Wu L, Xu Y, Ke C, Hu F, Xiao X, Huang J (2018) Identification and characterization of a novel alkalistable and salt-tolerant esterase from the deep-sea hydrothermal vent of the East Pacific Rise. Microbiologyopen 7:e00601.  https://doi.org/10.1002/mbo3.601 CrossRefGoogle Scholar
  51. Yu N, Yang JC, Yin GT, Li RS, Zou WT, He C (2018) Identification and characterization of a novel esterase from Thauera sp. Biotechnol Appl Bioc 65:748–755.  https://doi.org/10.1002/bab.1659 CrossRefGoogle Scholar
  52. Zhang J, Zhao M, Yu D, Yin J, Zhang H, Huang X (2017) Biochemical characterization of an enantioselective esterase from Brevundimonas sp. LY-2. Microb Cell Fact 16:112 doi:10.1186/s12934-017-0727-4Google Scholar
  53. Zhu Y, Li J, Cai H, Ni H, Xiao A, Hou L (2013) Characterization of a new and thermostable esterase from a metagenomic library. Microbiol Res 168:589–597.  https://doi.org/10.1016/j.micres.2013.04.004 CrossRefGoogle Scholar
  54. Zhu Y, Zheng W, Ni H, Liu H, Xiao A, Cai H (2015) Molecular cloning and characterization of a new and highly thermostable esterase from Geobacillus sp. JM6. J Basic Microbiol 55:1219–1231.  https://doi.org/10.1002/jobm.201500081 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Naples “Federico II”, Complesso Universitario Di Monte S. AngeloNaplesItaly
  2. 2.Institute of Biosciences and BioResourcesNational Research Council of ItalyNaplesItaly
  3. 3.Task Force On Microbiome StudiesUniversity of Naples Federico IINaplesItaly
  4. 4.Department of Medicine, Surgery and DentistryUniversity of SalernoFiscianoItaly

Personalised recommendations