High-quality draft genome sequence of Pseudomonas aeruginosa san ai, an environmental isolate resistant to heavy metals

  • Lidija Izrael-Živković
  • Vladimir Beškoski
  • Milena Rikalović
  • Snježana Kazazić
  • Nicole Shapiro
  • Tanja Woyke
  • Gordana Gojgić-Cvijović
  • Miroslav M. Vrvić
  • Nela Maksimović
  • Ivanka KaradžićEmail author
Original Paper


The strain Pseudomonas aeruginosa san ai, isolated from an extreme environment (industrial mineral cutting oil, pH 10), is able to survive and persist in the presence of a variety of pollutants such as heavy metals and organic chemicals. The genome of P. aeruginosa san ai is 6.98 Mbp long with a GC content of 66.08% and 6485 protein encoding genes. A large number of genes associated with proteins, responsible for microbial resistance to heavy metal ions and involved in catabolism of toxic aromatic organic compounds were identified. P. aeruginosa san ai is a highly cadmium-resistant strain. Proteome analysis of biomass after cadmium exposal confirmed a high tolerance to sublethal concentrations of cadmium (100 mg/L), based on: extracellular biosorption, bioaccumulation, biofilm formation, controlled siderophore production and a pronounced metalloprotein synthesis. Proteins responsible for survival in osmostress conditions during exposure to elevated concentrations of cadmium (200 mg/L) demonstrate a strong genetic potential of P. aeruginosa san ai for survival and adaptation. Sequencing of P. aeruginosa san ai genome provides valuable insights into the evolution and adaptation of this microbe to environmental extremes at the whole-genome level, as well as how to optimally use the strain in bioremediation of chemically polluted sites.


Pseudomonas aeruginosa Genome Environmental isolate Chemical pollution Cleaning polluted areas 



Matrix-assisted laser-desorption/ionization time-of-flight


(ultra) High-performance liquid chromatography


Mass spectrometry


National Collection of Agricultural and Industrial Microorganisms


Institute of Soil Science World Data Center for Microorganisms


The minimum information about a genome sequence



This research was supported by the JGI, Project CSP 741 and the Ministry of Science and Technological Development of Serbia, Project III43004. The work conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

792_2019_1092_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)
792_2019_1092_MOESM2_ESM.doc (48 kb)
Supplementary material 2 (DOC 47 kb)
792_2019_1092_MOESM3_ESM.docx (14 kb)
Supplementary material 3 (DOCX 14 kb)
792_2019_1092_MOESM4_ESM.doc (56 kb)
Supplementary material 4 (DOC 56 kb)


  1. Avramović N, Nikolić-Mandić S, Karadžić I (2013) Influence of rhamnolipids, produced by Pseudomonas aeruginosa NCAIM(P), B001380 on Cr(VI) removal capacity in liquid medium. J Serb Chem Soc 78:639–652CrossRefGoogle Scholar
  2. Beveridge T (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733Google Scholar
  3. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569CrossRefGoogle Scholar
  4. Clark LL, Dajcs JJ, McLean CH, Bartell JG, Stroman DW (2006) Pseudomonas otitidis sp. nov., isolated from patients with otic infections. Int J Syst Evol Microbiol 56:709–714CrossRefGoogle Scholar
  5. Dimitrijević A, Veličković D, Rikalović M, Avramović N, Milosavić N, Jankov R, Karadžić I (2011) Simultaneous production of exopolysaccharide and lipase from extremophilic Pseudomonas aeruginosa san-ai strain: a novel approach for lipase immobilization and purification. Carbohyd Polym 83:1397–1401CrossRefGoogle Scholar
  6. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138CrossRefGoogle Scholar
  7. Ferianc P, Farwell A, Nystrom T (1998) The cadmium-stress stimulon of Escherichia coli K. Microbiology 144:1045–1050CrossRefGoogle Scholar
  8. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P et al (2008) The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26:541–547CrossRefGoogle Scholar
  9. Garrity GM, Bell JA, Lilburn T (2005a) Phylum XIV. Proteobacteriaphyl. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, part B, vol 2, 2nd edn. Springer, New York, p 1Google Scholar
  10. Garrity GM, Bell JA, Lilburn T (2005b) Class III. Gammaproteobacteria class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, part B, vol 2, 2nd edn. Springer, New York, p 1Google Scholar
  11. Garrity G, Bell J, Lilburn T (2005c) Order IX. Pseudomonadales. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, Second edition, volume 2, part B. Springer, New York, p 323CrossRefGoogle Scholar
  12. Grbavčić S, Bezbradica D, Izrael-Živković L, Avramović N, Milosavić N, Karadžić I, Knežević Z (2011) Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance. Bioresource Technol 102:11226–11233CrossRefGoogle Scholar
  13. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an RNA family database. Nucleic Acids Res 31:439–441CrossRefGoogle Scholar
  14. Hivrale AU, Pawar PK, Rane NJ, Govindwar SP (2016) Application of genomics and proteomics in bioremediation in toxicity and waste management using bioremediation. IGI Glob. Google Scholar
  15. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf 11:119CrossRefGoogle Scholar
  16. Izrael-Zivkovic L, Rikalovic M, Gojgic-Cvijovic G, Kazazic S, Vrvic M, Brceski I, Beskoski V, Loncarevic B, Gopcevic K, Karadzic I (2018) Cadmium specific proteomic responses of highly resistant Pseudomonas aeruginosa san ai. RSC Adv 8:10549–10560CrossRefGoogle Scholar
  17. Kapley A, Purohit H (2009) Genomic tools in bioremediation. Indian J Microbiol 49:108–113CrossRefGoogle Scholar
  18. Karadžić I, Masui A, Fujiwara N (2004) Purification and characterization of a protease from Pseudomonas aeruginosa grown in cutting oil. J Biosci Bioeng 98:145–152CrossRefGoogle Scholar
  19. Karadžić I, Masui A, Živković LI, Fujiwara N (2006) Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. J Biosci Bioeng 102:82–89CrossRefGoogle Scholar
  20. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefGoogle Scholar
  21. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC (2009) IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25:2271–2278CrossRefGoogle Scholar
  22. Miller CD, Pettee B, Zhang C, Pabst M, McLean JE, Anderson AJ (2009) Copper and cadmium: responses in Pseudomonas putida KT2440. Lett Appl Microbiol 49:775–783CrossRefGoogle Scholar
  23. Mulet M, Lalucat J, García-Valdés E (2010) DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12:1513–1530Google Scholar
  24. Mulet M, David Z, Nogales B, Bosch R, Lalucat J, Garcia-Valdes E (2011) Pseudomonas diversity in crude-oil-contaminated intertidal sand samples obtained after Prestige oil spill. Appl Environ Microbiol 77:1076–1085CrossRefGoogle Scholar
  25. Orla-Jensen S (1921) The main lines of the natural bacterial system. J Bacteriol 6:263–273Google Scholar
  26. Pagès D, Sanchez L, Conrod S, Gidrol X, Fekete A, Schmitt-Kopplin P, Heulin T, Achouak W (2007) Exploration of intraclonal adaptation mechanisms of Pseudomonas brassicacearum facing cadmium toxicity. Environ Microbiol 9:2820–2835CrossRefGoogle Scholar
  27. Palleroni N (2005a) Genus I. Pseudomonas. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 373–377Google Scholar
  28. Palleroni N (2005b) Genus I. Pseudomonas. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 323–357Google Scholar
  29. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A (2010) GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods 27:455–457CrossRefGoogle Scholar
  30. Poirier I, Jean N, Guary JC, Bertrand M (2008) Responses of the marine bacterium Pseudomonas fluorescens to an excess of heavy metals: physiological and biochemical aspects. Sci Total Environ 1406:76–87CrossRefGoogle Scholar
  31. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196CrossRefGoogle Scholar
  32. Rikalović M, Abdel-Mawgoud AM, DézielE Gojgić-Cvijović G, Nestorović Z, Vrvić M, Karadžić I (2013) Comparative analysis of rhamnolipids from novel environmental isolates of Pseudomonas aeruginosa. J Surfact Deterg 16:673–682CrossRefGoogle Scholar
  33. Singh R, Bishnoi NR, Kirrolia A (2013) Evaluation of Pseudomonas aeruginosa an innovative bioremediation tool in multi metals ions from simulated system using multi response methodology. Bioresour Technol 138:22–234CrossRefGoogle Scholar
  34. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420CrossRefGoogle Scholar
  35. Stover CK, Pham X, Erwin A, Mizoguchi S, Warrener P, Hickey M, Brinkman F, Hufnagle W, Kowalik D, Lagrou M (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964CrossRefGoogle Scholar
  36. Winsor GL, Lam D, Fleming L, Lo R, Whiteside M, Yu N, Hancock RE, Brinkman F (2011) Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res 39:D596–D600CrossRefGoogle Scholar
  37. Woese CR (1990) Towards a natural system of organisms: proposal for the domains and eucarya. Proc Natl Acad Sci USA 87:4576–4579CrossRefGoogle Scholar
  38. Wood JM (2011) Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Ann Rev Microbiol 65:215–238CrossRefGoogle Scholar
  39. Xia X, Li J, Zhou Z, Wang D, Huang J, Wang G (2018) High-quality draft high genome sequence of the multiple heavy metal resistant bacterium PseudaminobactermanganicusJH-7. Stand Genomic Sci 13(29):1–8Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Lidija Izrael-Živković
    • 1
  • Vladimir Beškoski
    • 2
  • Milena Rikalović
    • 3
  • Snježana Kazazić
    • 4
  • Nicole Shapiro
    • 5
  • Tanja Woyke
    • 5
  • Gordana Gojgić-Cvijović
    • 6
  • Miroslav M. Vrvić
    • 2
  • Nela Maksimović
    • 7
  • Ivanka Karadžić
    • 1
    Email author
  1. 1.Department of Chemistry, Faculty of MedicineUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia
  3. 3.Faculty of Applied Ecology FuturaSingidunum UniversityBelgradeSerbia
  4. 4.RuđerBošković InstituteZagrebCroatia
  5. 5.DOE Joint Genome InstituteWalnut CreekUSA
  6. 6.Department of Chemistry, Institute of Chemistry, Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  7. 7.Department of Human Genetics, Faculty of MedicineUniversity of BelgradeBelgradeSerbia

Personalised recommendations