Advertisement

Extremophiles

, Volume 23, Issue 3, pp 327–336 | Cite as

The diversity, distribution, and pathogenic potential of cultivable fungi present in rocks from the South Shetlands archipelago, Maritime Antarctica

  • Isabel M. S. Alves
  • Vívian N. Gonçalves
  • Fabio S. Oliveira
  • Carlos E. G. R. Schaefer
  • Carlos A. Rosa
  • Luiz H. RosaEmail author
Original Paper
  • 79 Downloads

Abstract

We studied the molecular taxonomy and diversity of cultivable rock fungi from Antarctic islands. From 50 rock samples, 386 fungal isolates were obtained and identified as 33 taxa of 20 genera. The genera Cladophialophora, Cladosporium, Cyphellophora, Eichleriella, Paracladophialophora, and Penicillium displayed the highest densities. Ecological diversity indices showed that the fungal assemblages are diverse and rich with low dominance. The genera Cladophialophora, Cladosporium, and Penicillium showed a broad distribution from rocks of the various islands. One hundred and fifty-nine fungi, grown at 37 °C, were identified as Penicillium chrysogenum, Fusarium sp., and Rhodotorula mucilaginosa. One hundred and three fungi displayed haemolytic activity, 81 produced proteinase, 9 produced phospholipase, and 25 presented dimorphism and a spore diameter ≤ 4 µm. The Antarctic Peninsula region appears to be under the effects of global climate changes, which may expose and accelerate the rock’s weathering processes, and expose and release cryptic fungi and other microbes, especially those with innate pathogenic potential, previously arrested in rocks. Consequently, these rocks and their particles may represent a vehicle for the dispersal of microbial propagules, including those able to spread pathogens, along, across, and out of Antarctica.

Keywords

Antarctica Extremophile Taxonomy Rocks 

Notes

Acknowledgements

We acknowledge the financial support from CNPq, CNPq/ PROANTAR 442258-2018-6, INCT Criosfera 2, FAPEMIG (0050-13), CAPES, and PRPq-UFMG.

Compliance with ethical standards

Conflict of interest

The authors declare that no competing interests exist.

Supplementary material

792_2019_1086_MOESM1_ESM.docx (222 kb)
Supplementary material 1 (DOCX 222 kb)
792_2019_1086_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 16 kb)
792_2019_1086_MOESM3_ESM.docx (13 kb)
Supplementary material 3 (DOCX 13 kb)
792_2019_1086_MOESM4_ESM.docx (27 kb)
Supplementary material 4 (DOCX 27 kb)

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  2. Aoki S, Ito-Kuwa S, Nakamura Y, Masuhara T (1990) Comparative pathogenicity of wild-type strains and respiratory mutants of Candida albicans in mice. Zentralbl Bakteriol 273:332–343CrossRefGoogle Scholar
  3. Badali H, Gueidan C, Najafzadeh MJ, Bonifaz A, van den Ende A, de Hoog G (2008) Biodiversity of the genus Cladophialophora. Stud Mycol 61:175–191.  https://doi.org/10.3114/sim.2008.61.18 CrossRefGoogle Scholar
  4. Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Göttlich E, de Hoog S, Genilloud O, Marinelli F (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genom 2:43–50.  https://doi.org/10.1016/j.margen.2009.04.002 CrossRefGoogle Scholar
  5. Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology 8:129–138.  https://doi.org/10.1038/nrmicro2281 CrossRefGoogle Scholar
  6. CLSI (2008a) Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-third edition; CLSI document M27-A3. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  7. CLSI (2008b) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard CLSI document M38-A2. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  8. Davis DA (2009) How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol 12:365–370.  https://doi.org/10.1016/j.mib.2009.05.006 CrossRefGoogle Scholar
  9. de Hoog GS, Queiroz-Telles F, Haase G, Fernandez-Zeppenfeld TG, Attili Angelis D, Van Der Gerrits EAHG, Matos T, Peltroche-Llacsahuanga H, Pizzirani-Kleiner AA, Rainer J, Richard-Yegres N, Vicente V, Yegres F (2000) Black fungi: clinical and pathogenic approaches. Medical Mycology 38:243–250.  https://doi.org/10.1080/mmy.38.s1.243.250 CrossRefGoogle Scholar
  10. de Hoog GS, Zalar P, Van den Ende, BG, Gunde-Cimerman N (2005) Relation of halotolerance to human-pathogenicity in the fungal tree of life: an overview of ecology and evolution under stress. Adaptation To Life at High Salt Concentrations in Archaea, Bacteria and Eukarya—Fungi. Springer, Netherlands, pp 371–395Google Scholar
  11. de Sousa JRP, Gonçalves VN, de Holanda RA, Santos DA, Bueloni CFLG, Costa AO, Petry MV, Rosa CA, Rosa LH (2017) Pathogenic potential of environmental resident fungi from ornithogenic soils of Antarctica. Fungal Biol 12:991–1000.  https://doi.org/10.1016/j.funbio.2017.09.005 CrossRefGoogle Scholar
  12. de Vries GA (1962) Cyphellophora laciniata nov. gen., nov. sp. and Dactylium fusarioides Fragoso et Ciferri. Mycopat Mycol Appl 16:47–54.  https://doi.org/10.1007/BF02136180 CrossRefGoogle Scholar
  13. Decock C, Delgado-Rodríguez G, Buchet S, Seng JM (2003) A new species and three new combinations in Cyphellophora, with a note on the taxonomic affinities of the genus, and its relation to Kumbhamaya and Pseudomicrodochium. Anton Leeuw Int J G 84:209–216.  https://doi.org/10.1371/journal.pone.0136857 CrossRefGoogle Scholar
  14. Feng P, Lu Q, Najafzadeh MJ, van den Ende GAHG, Sun J, Li R, Xi L, Vicente VA, Lai W, Lu C, de Hoog GS (2014) Cyphellophora and its relatives in Phialophora: biodiversity and possible role in human infection. Fungal Div 65:17–45.  https://doi.org/10.1007/s13225-012-0194-5 CrossRefGoogle Scholar
  15. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053CrossRefGoogle Scholar
  16. Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–174Google Scholar
  17. Gams W, Holubová-Jechová V (1976) Chloridium and some other dematiaceous hyphomycetes growing on decaying wood. Stud Mycol 13:1–99Google Scholar
  18. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330Google Scholar
  19. Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya N, Pupo D et al (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME 7:1434–1451.  https://doi.org/10.1038/ismej.2013.77 CrossRefGoogle Scholar
  20. Godinho VM, Gonçalves VN, Santiago IF, Figueredo HM, Vitoreli GA, Schaefer CEGR et al (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596.  https://doi.org/10.1007/s00792-015-0741-6) CrossRefGoogle Scholar
  21. Gomes ECQ, Godinho VM, Silva DAS, de Paula MTR, Vitoreli GA, Zani CL, Alves TMA, Junior PAS, Murta SMF, Barbosa EC, Oliveira JG, Oliveira FS, Carvalho CR, Ferreira MC, Rosa CA, Rosa LH (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22(3):381–393.  https://doi.org/10.1007/s00792-018-1003-1 CrossRefGoogle Scholar
  22. Gonçalves VN, Vaz ABM, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:459–471.  https://doi.org/10.1111/j.1574-6941.2012.01424 CrossRefGoogle Scholar
  23. Gonçalves VN, Cantrell CL, Wedge DE, Ferreira MC, Soares MA, Jacob MR et al (2015) Fungi associated with rocks of the Atacama Desert: taxonomy, distribution, diversity, ecology and bioprospection for bioactive compounds. Environ Microbiol 18:232–245.  https://doi.org/10.1111/1462-2920.13005 CrossRefGoogle Scholar
  24. Gonçalves VN, Oliveira FS, Carvalho CR, Schaefer CEGR, Rosa CA, Rosa LH (2017) Antarctic rocks from continental Antarctica as source of potential human opportunistic fungi. Extremophiles 21:851–860.  https://doi.org/10.1007/s00792-017-0947-x CrossRefGoogle Scholar
  25. Gueidan C, Villaseñor CR, de Hoog GS, Gorbushina AA, Untereine WA, Lutzoni F (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal linheages. Stud Mycol 61:111–119.  https://doi.org/10.3114/sim.2008.61.11 CrossRefGoogle Scholar
  26. Hall A (1989) Igneous petrology. Longman Pub Group, Singapura, p 550Google Scholar
  27. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software. package for education and data analysis. Paleontol Electron 4:1–9Google Scholar
  28. Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DM, Valdez JG, Samson RA (2012) New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 29:78–100.  https://doi.org/10.3767/003158512X660571 CrossRefGoogle Scholar
  29. Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5:555–565.  https://doi.org/10.1046/j.1462-2920.2003.00439.x CrossRefGoogle Scholar
  30. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the Fungi, 10th edn. Wallingford, CAB InternationalGoogle Scholar
  31. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study, 5th edn. Amsterdam, ElsevierGoogle Scholar
  32. Lachance MA, Bowles JM, Starmer WT, Barker JSF (1999) Kodamaea kakaduensis and Candida tolerans, two new yeast species from Australian Hibiscus flowers. Can J Microbiol 45:172–177.  https://doi.org/10.1099/ijs.0.052282-0 CrossRefGoogle Scholar
  33. Latge JP (2001) The pathobiology of Aspergillus fumigatus. Trends Microbiol 9:382–389.  https://doi.org/10.1016/S0966-842X(01)02104-7 CrossRefGoogle Scholar
  34. Lyratzopoulos G, Ellis M, Nerringer R, Denning DW (2002) Invasive Infection due to Penicillium species other than P. marneffei. J Infection 45:184–207.  https://doi.org/10.1053/jinf.2002.1056 CrossRefGoogle Scholar
  35. McRae CF, Hocking AD, Seppelt RD (1999) Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species, Penicillium antarcticum. Polar Biol 21:97–111CrossRefGoogle Scholar
  36. Onofri S, Fenice M, Cicalini AR, Tosi S, Magrino A, Pagano S, Selbmann L, Zucconi L, Vishniac HS, Ocampo-Friedmann R, Friedmann EI (2000) Ecology and biology of microfungi from Antarctic rocks andsoil. Ital J Zool 67(suppl. 1):163–168.  https://doi.org/10.1080/11250000009356372 CrossRefGoogle Scholar
  37. Price MF, Wilkinson LD, Gentry LO (1982) Plate method for detection of phospholipase activity in Candida albicans. Sabouraud 20:7–14CrossRefGoogle Scholar
  38. Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic Grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167.  https://doi.org/10.1007/s00300-008-0515-z CrossRefGoogle Scholar
  39. Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141.  https://doi.org/10.1007/s11157-006-9107-y CrossRefGoogle Scholar
  40. Sánchez-Martínez C, Pérez-Martín J (2001) Dimorphism in fungal pathogens: candida albicans and Ustilago maydis—similar inputs, different outputs. Curr Opin Microbiol 4:214–221.  https://doi.org/10.1016/S1369-5274(00)00191-0 CrossRefGoogle Scholar
  41. Schaufuss P, Muller F, Valentin-Weigand P (2007) Isolation and characterization of a haemolysin from Trichophyton mentagrophytes. Vet Microbiol 122:342–349.  https://doi.org/10.1099/mic.0.046417-0 CrossRefGoogle Scholar
  42. Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32Google Scholar
  43. Swoboda-Kopec E, Wroblewska MM, Rokoz A, Luczak M (2002) Mixed bloodstream infection with Stahylococcus aureus and Penicillium chrysogenum in an immunocompromised patient: case report and review of the literature. Clin Microbiol Infect 9:1116–1117.  https://doi.org/10.1046/j.1469-0691.2003.00718.x CrossRefGoogle Scholar
  44. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefGoogle Scholar
  45. Tang Y, Lian B (2012) Diversity of endolithic fungal communities in dolomite and limestone rocks from Nanjiang Canyon in Guizhou karst area, China. Can J Microbiol 58:685–693.  https://doi.org/10.1139/w2012-042 CrossRefGoogle Scholar
  46. White TJ, Bruns TD, Lee SB (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis NA, Gelfand J, Sninsky J et al (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  47. Zucconi L, Selbmann L, Buzzini P, Turchetti B, Guglielmin M, Frisvad JC, Onofri S (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 35:749–757CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Isabel M. S. Alves
    • 1
  • Vívian N. Gonçalves
    • 1
  • Fabio S. Oliveira
    • 2
  • Carlos E. G. R. Schaefer
    • 3
  • Carlos A. Rosa
    • 1
  • Luiz H. Rosa
    • 1
    Email author
  1. 1.Departmento de MicrobiologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
  2. 2.Departmento de GeofrafiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
  3. 3.Departmento de SolosUniversidade Federal de Minas GeraisViçosaBrasil

Personalised recommendations