Advertisement

High diversity of thermophilic cyanobacteria in Rupite hot spring identified by microscopy, cultivation, single-cell PCR and amplicon sequencing

  • Otakar Strunecký
  • Karel Kopejtka
  • Franz Goecke
  • Jürgen Tomasch
  • Jaromír Lukavský
  • Amir Neori
  • Silke Kahl
  • Dietmar H. Pieper
  • Plamen Pilarski
  • David Kaftan
  • Michal Koblížek
Original Paper

Abstract

Genotypic and morphological diversity of cyanobacteria in the Rupite hot spring (Bulgaria) was investigated by means of optical microscopy, cultivation, single-cell PCR, and 16S rRNA gene amplicon sequencing. Altogether, 34 sites were investigated along the 71–39 °C temperature gradient. Analysis of samples from eight representative sites shown that Illumina, optical microscopy, and Roche 454 identified 72, 45 and 19% respective occurrences of all cumulatively present taxa. Optical microscopy failed to detect species of minor occurrence; whereas, amplicon sequencing technologies suffered from failed primer annealing and the presence of species with extensive extracellular polysaccharides production. Amplicon sequencing of the 16S rRNA gene V5–V6 region performed by Illumina identified the cyanobacteria most reliably to the generic level. Nevertheless, only the combined use of optical microscopy, cultivation and sequencing methods allowed for reliable estimate of the cyanobacterial diversity. Here, we show that Rupite hot-spring system hosts one of the richest cyanobacterial flora reported from a single site above 50 °C. Chlorogloeopsis sp. was the most abundant at the highest temperature (68 °C), followed by Leptolyngbya boryana, Thermoleptolyngbya albertanoae, Synechococcus bigranulatus, Oculatella sp., and Desertifilum sp. thriving above 60 °C, while Leptolyngbya geysericola, Geitlerinema splendidum, and Cyanobacterium aponinum were found above 50 °C.

Keywords

Bulgaria Cyanobacteria Extremophile Hot spring 

Notes

Acknowledgements

We thank M. Dachev, H. Medová, V. Selyanin, T. Stambolieva and V. Titlová for their technical assistance. The authors are particularly indebted to the editor and reviewers for their valuable comments on the manuscript. This study was conducted with support from GAČR projects 15-00703S (to M.K., D.K. and K.K.), and 15-00113S (to O.S.), Czech Ministry of Education projects “CENAKVA” (No. CZ.1.05/2.1.00/01.0024), and “CENAKVA II” (No. LO1205 under the NPU I program), European Regional Development Fund-Project (No. CZ.02.1.01/0.0/0.0/15_003/0000441) and Algatech Plus (LO1416). J. L. and P.P. thank the Mobility Program of the Bulgarian and Czech Academies of Science, “Study of biotechnological potential of extremophilic and extremotolerant algae and cyanobacteria”.

Author contributions

MK designed the study. OS, FG, JL, PP, DK conducted the collections and strain isolations. OS, KK, JT, SK, and DHP conducted sequencing, sequence analyses and bioinformatics. OS, MK, FG, DK and AN wrote the paper.

Compliance with ethical standards

Conflict of interest

No potential conflict of interests was reported by the authors.

Supplementary material

792_2018_1058_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1651 kb)
792_2018_1058_MOESM2_ESM.pdf (423 kb)
Supplementary material 2 (PDF 422 kb)
792_2018_1058_MOESM3_ESM.pdf (97 kb)
Supplementary material 3 (PDF 97 kb)
792_2018_1058_MOESM4_ESM.pdf (190 kb)
Supplementary material 4 (PDF 190 kb)
792_2018_1058_MOESM5_ESM.pdf (169 kb)
Supplementary material 5 (PDF 168 kb)

References

  1. Alcaman E, Fernandez C, Delgado A, Bergman B, Diez B (2015) The cyanobacterium Mastigocladus fulfills the nitrogen demand of a terrestrial hot spring microbial mat. ISME J 9:2290–2303.  https://doi.org/10.1038/ismej.2015.63 CrossRefGoogle Scholar
  2. Allewalt JP, Bateson MM, Revsbech NP, Slack K, Ward DM (2006) Effect of temperature and light on growth of and photosynthesis by Synechococcus isolates typical of those predominating in the Octopus Spring microbial mat community of Yellowstone National Park. Appl Environ Microbiol 72:544–550.  https://doi.org/10.1128/aem.72.1.544-550.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amarouche-Yala S, Benouadah A, El Ouahab Bentabet A, Lopez-Garcia P (2014) Morphological and phylogenetic diversity of thermophilic cyanobacteria in Algerian hot springs. Extremophiles 18:1035–1047.  https://doi.org/10.1007/s00792-014-0680-7 CrossRefPubMedGoogle Scholar
  4. Bauld J, Brock TD (1974) Algal excretion and bacterial assimilation in hot spring algal mats. J Phycol 10:101–106.  https://doi.org/10.1111/j.0022-3646.1974.00101.x CrossRefGoogle Scholar
  5. Bohorquez LC, Delgado-Serrano L, Lopez G et al (2012) In-depth characterization via complementing culture-independent approaches of the microbial community in an acidic hot spring of the Colombian Andes. Microb Ecol 63:103–115.  https://doi.org/10.1007/s00248-011-9943-3 CrossRefPubMedGoogle Scholar
  6. Bohunická M, Mareš J, Hrouzek P et al (2015) A combined morphological, ultrastructural, molecular, and biochemical study of the peculiar family Gomontiellaceae (Oscillatoriales) reveals a new cylindrospermopsin-producing clade of cyanobacteria. J Phycol 51:1040–1054.  https://doi.org/10.1111/jpy.12354 CrossRefPubMedGoogle Scholar
  7. Bojadgieva K, Hristov V, Benderev A (2007) General overview of geothermal energy in Bulgaria. Acta Montan Slovaca 12:86–91Google Scholar
  8. Boone DR, Castenholz RW, Garrity GM (2001) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  9. Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer series in microbiology. Springer, New YorkCrossRefGoogle Scholar
  10. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421.  https://doi.org/10.1186/1471-2105-10-421 CrossRefGoogle Scholar
  11. Camarinha-Silva A, Jáuregui R, Chaves-Moreno D et al (2014) Comparing the anterior nare bacterial community of two discrete human populations using Illumina amplicon sequencing. Environ Microbiol 16:2939–2952.  https://doi.org/10.1111/1462-2920.12362 CrossRefPubMedGoogle Scholar
  12. Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacter Rev 33:476–504Google Scholar
  13. Castenholz RW (1996) Endemism and biodiversity of thermophilic cyanobacteria. Nova Hedwig Beih 112:33–48Google Scholar
  14. Castenholz RW (2015) Portrait of a geothermal spring, Hunter’s Hot Springs, Oregon. Life (Basel) 5:332–347.  https://doi.org/10.3390/life5010332 CrossRefPubMedCentralGoogle Scholar
  15. Copeland JJ (1936) Yellowstone thermal Myxophyceae. Ann N Y Acad Sci.  https://doi.org/10.1111/j.1749-6632.1936.tb56976.x CrossRefGoogle Scholar
  16. Dadheech PK, Abed RMM, Mahmoud H, Mohan MK, Krienitz L (2012) Polyphasic characterization of cyanobacteria isolated from desert crusts, and the description of Desertifilum tharense gen. et sp. nov. (Oscillatoriales). Phycologia 51:260–270.  https://doi.org/10.2216/09-51.1 CrossRefGoogle Scholar
  17. Evans EH, Foulds I, Carr NG (1976) Environmental conditions and morphological variation in the blue-green alga Chlorogloea fritschii. Gen Microbiol 92:147–155.  https://doi.org/10.1099/00221287-92-1-147 CrossRefGoogle Scholar
  18. Finsinger K, Scholz I, Serrano A et al (2008) Characterization of true-branching cyanobacteria from geothermal sites and hot springs of Costa Rica. Environ Microbiol 10:460–473.  https://doi.org/10.1111/j.1462-2920.2007.01467.x CrossRefPubMedGoogle Scholar
  19. Gacheva GV, Gigova LG, Ivanova NY, Pilarski PS, Lukavský J (2013) Growth, biochemical and enzymatic responses of thermal cyanobacterium Gloeocapsa sp. (Cyanophyceae) to temperature and irradiance. Phycol Res 61:217–227.  https://doi.org/10.1111/pre.12016 CrossRefGoogle Scholar
  20. Hamilton TL, Vogl K, Bryant DA, Boyd ES, Peters JW (2012) Environmental constraints defining the distribution, composition, and evolution of chlorophototrophs in thermal features of Yellowstone National Park. Geobiology 10:236–249.  https://doi.org/10.1111/j.1472-4669.2011.00296.x CrossRefPubMedGoogle Scholar
  21. Hindak F, Kviderova J, Lukavsky J (2013) Growth characteristics of selected thermophilic strains of cyanobacteria using crossed gradients of temperature and light. Biologia 68:830–837.  https://doi.org/10.2478/s11756-013-0215-1 CrossRefGoogle Scholar
  22. Hurter S, Schellschmidt R (2003) Atlas of geothermal resources in Europe. Geothermics 32:779–787.  https://doi.org/10.1016/s0375-6505(03)00070-1 CrossRefGoogle Scholar
  23. Inoue N, Taira Y, Emi T, Yamane Y, Kashino Y, Koike H, Satoh K (2001) Acclimation to the growth temperature and the high-temperature effects on photosystem II and plasma membranes in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. Plant Cell Physiol 42:1140–1148.  https://doi.org/10.1093/pcp/pce147 CrossRefPubMedGoogle Scholar
  24. Jackson JE, Castenholz RW (1975) Fidelity of thermophilic blue-green-algae to hot spring habitats. Limnol Oceanogr 20:305–322.  https://doi.org/10.4319/lo.1975.20.3.0305 CrossRefGoogle Scholar
  25. Kastovsky J, Johansen JR (2008) Mastigocladus laminosus (Stigonematales, Cyanobacteria): phylogenetic relationship of strains from thermal springs to soil-inhabiting genera of the order and taxonomic implications for the genus. Phycologia 47:307–320.  https://doi.org/10.2216/07-69.1 CrossRefGoogle Scholar
  26. Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900.  https://doi.org/10.1093/bioinformatics/btq224 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Klatt CG, Wood JM, Rusch DB et al (2011) Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J 5:1262–1278.  https://doi.org/10.1038/ismej.2011.73 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Komárek J (2017) Cyanoprokaryota 3. Teil: Nostocalaes vol Teil/3rd part: Heterocytous Genera. Süßwasserflora von Mitteleuropa, vol 19/3, 1st edn. Springer, HeidelbergGoogle Scholar
  29. Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil: Chroococcales vol 19/1. Süsswasserflora von Mitteleuropa. Gustav Fischer, JenaGoogle Scholar
  30. Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil: Oscillatoriales. Süsswasserflora von Mitteleuropa vol 19/2. Elsevier, HeidelbergGoogle Scholar
  31. Komárek J, Kaštovský J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–335Google Scholar
  32. Lukavský J, Furnadzhieva S, Pilarski P (2011) Cyanobacteria of the thermal spring at Pancharevo, Sofia. Bulgaria-Acta Botanica Croatica.  https://doi.org/10.2478/v10184-010-0015-4 CrossRefGoogle Scholar
  33. Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar VLM (2013) Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw Biol 58:552–559.  https://doi.org/10.1111/j.1365-2427.2012.02866.x CrossRefGoogle Scholar
  34. Mackenzie R, Pedrós-Alió C, Díez B (2013) Bacterial composition of microbial mats in hot springs in Northern Patagonia: variations with seasons and temperature. Extremophiles 17:123–136.  https://doi.org/10.1007/s00792-012-0499-z CrossRefPubMedGoogle Scholar
  35. Mareš J, Hrouzek P, Kana R, Ventura S, Strunecky O, Komarek J (2013) The primitive thylakoid-less cyanobacterium Gloeobacter is a common rock-dwelling organism. PLoS One 8:e66323.  https://doi.org/10.1371/journal.pone.0066323 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mareš J, Lara Y, Dadakova I, Hauer T, Uher B, Wilmotte A, Kastovsky J (2015) Phylogenetic analysis of cultivation-resistant terrestrial cyanobacteria with massive sheaths (Stigonema spp. and Petalonema alatum, Nostocales, Cyanobacteria) using single-cell and filament sequencing of environmental samples. J Phycol 51:288–297.  https://doi.org/10.1111/jpy.12273 CrossRefPubMedGoogle Scholar
  37. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12.  https://doi.org/10.14806/ej.17.1.200 CrossRefGoogle Scholar
  38. McGregor GB, Rasmussen JP (2008) Cyanobacterial composition of microbial mats from an Australian thermal spring: a polyphasic evaluation. FEMS Microbiol Ecol 63:23–35.  https://doi.org/10.1111/j.1574-6941.2007.00405.x CrossRefPubMedGoogle Scholar
  39. Miller SR, Purugganan MD, Curtis SE (2006) Molecular population genetics and phenotypic diversification of two populations of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol 72:2793–2800.  https://doi.org/10.1128/aem.72.4.2793-2800.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Miller SR, Castenholz RW, Pedersen D (2007) Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol 73:4751–4759.  https://doi.org/10.1128/aem.02945-06 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Miller SR, Strong AL, Jones KL, Ungerer MC (2009) Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl Environ Microbiol 75:4565–4572.  https://doi.org/10.1128/aem.02792-08 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mohamed ZA (2008) Toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia. Toxicon 51:17–27.  https://doi.org/10.1016/j.toxicon.2007.07.007 CrossRefPubMedGoogle Scholar
  43. Moro I, Rascio N, La Rocca N, Di Bella M, Andreoli C (2007) Cyanobacterium aponinum, a new Cyanoprokaryote from the microbial mat of Euganean thermal springs (Padua, Italy). Alg Stud 123:1–15.  https://doi.org/10.1127/1864-1318/2007/0123-0001 CrossRefGoogle Scholar
  44. Moro I, Rascio N, La Rocca N, Sciuto K, Albertano P, Bruno L, Andreoli C (2010) Polyphasic characterization of a thermo-tolerant filamentous cyanobacterium isolated from the Euganean thermal muds (Padua, Italy). Eur Phycol 45:143–154.  https://doi.org/10.1080/09670260903564391 CrossRefGoogle Scholar
  45. Mühlsteinová R, Johansen JR, Pietrasiak N, Martin MP (2014) Polyphasic characterization of Kastovskya adunca gen. nov. et comb. nov. (Cyanobacteria: Oscillatoriales), from desert soils of the Atacama Desert, Chile. Phytotaxa 163:216.  https://doi.org/10.11646/phytotaxa.163.4.2 CrossRefGoogle Scholar
  46. Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332PubMedPubMedCentralGoogle Scholar
  47. Ohkubo S, Miyashita H (2017) A niche for cyanobacteria producing chlorophyll f within a microbial mat. ISME J 11:2368–2378.  https://doi.org/10.1038/ismej.2017.98 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Oren A, Ionescu D, Hindiyeh M, Malkawi H (2009) Morphological, phylogenetic and physiological diversity of cyanobacteria in the hot springs of Zerka Ma’in, Jordan. BioRisk 3:69–82.  https://doi.org/10.3897/biorisk.3.29 CrossRefGoogle Scholar
  49. Osorio-Santos K, Pietrasiak N, Bohunická M, Miscoe LH, Kováčik L, Martin MP, Johansen JR (2014) Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. Eur Phycol 49:450–470.  https://doi.org/10.1080/09670262.2014.976843 CrossRefGoogle Scholar
  50. Palinska KA, Vogt JC, Surosz W (2017) Biodiversity analysis of the unique geothermal microbial ecosystem of the Blue Lagoon (Iceland) using next-generation sequencing (NGS). Hydrobiologia 811:93–102.  https://doi.org/10.1007/s10750-017-3349-2 CrossRefGoogle Scholar
  51. Papke RT, Ramsing NB, Bateson MM, Ward DM (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5:650–659.  https://doi.org/10.1046/j.1462-2920.2003.00460.x CrossRefPubMedGoogle Scholar
  52. Pepe-Ranney C, Berelson WM, Corsetti FA, Treants M, Spear JR (2012) Cyanobacterial construction of hot spring siliceous stromatolites in Yellowstone National Park. Environ Microbiol 14:1182–1197.  https://doi.org/10.1111/j.1462-2920.2012.02698.x CrossRefPubMedGoogle Scholar
  53. Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24.  https://doi.org/10.1007/bf00446302 CrossRefPubMedGoogle Scholar
  54. Prieto-Barajas CM, Alcaraz LD, Valencia-Cantero E, Santoyo G (2018) Life in hot spring microbial mats located in the trans-mexican volcanic belt: a 16S/18S rRNA gene and metagenomic analysis. Geomicrobiol J 35:704–712.  https://doi.org/10.1080/01490451.2018.1454555 CrossRefGoogle Scholar
  55. Roeselers G, Norris TB, Castenholz RW, Rysgaard S, Glud RN, Kuhl M, Muyzer G (2007) Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland). Environ Microbiol 9:26–38.  https://doi.org/10.1111/j.1462-2920.2006.01103.x CrossRefPubMedGoogle Scholar
  56. Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584.  https://doi.org/10.7717/peerj.2584 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ronquist F, Huelsenbeck J (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefGoogle Scholar
  58. Rozanov AS, Bryanskaya AV, Ivanisenko TV, Malup TK, Peltek SE (2017) Biodiversity of the microbial mat of the Garga hot spring. BMC Evol Biol 17:254.  https://doi.org/10.1186/s12862-017-1106-9 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sabour B, Sbiyyaa B, Loudiki M, Oudra B, Belkoura M, Vasconcelos V (2009) Effect of light and temperature on the population dynamics of two toxic bloom forming Cyanobacteria—Microcystis ichthyoblabe and Anabaena aphanizomenoides. Chem Ecol 25:277–284.  https://doi.org/10.1080/02757540903062525 CrossRefGoogle Scholar
  60. Sciuto K, Moro I (2016) Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S-23S ITS region. Mol Phylogenet Evol 105:15–35.  https://doi.org/10.1016/j.ympev.2016.08.010 CrossRefPubMedGoogle Scholar
  61. Seckbach J (2007) Algae and cyanobacteria in extreme environments. Springer, HamburgCrossRefGoogle Scholar
  62. Singh Y, Gulati A, Singh DP, Khattar JIS (2018) Cyanobacterial community structure in hot water springs of Indian North-Western Himalayas: a morphological, molecular and ecological approach. Algal Res 29:179–192.  https://doi.org/10.1016/j.algal.2017.11.023 CrossRefGoogle Scholar
  63. Smalla K, van Overbeek LS, Pukall R, van Elsas JD (1993) Prevalence of nptII and Tn5 in kanamycin-resistant bacteria from different environments. FEMS Microbiol Ecol 13:47–58.  https://doi.org/10.1111/j.1574-6941.1993.tb00050.x CrossRefGoogle Scholar
  64. Sompong U, Anuntalabhochai S, Cutler RW, Castenholz RW, Peerapornpisal Y (2008) Morphological and phylogenic diversity of cyanobacterial populations in six hot springs of Thailand. Sci Asia 34:153.  https://doi.org/10.2306/scienceasia1513-1874.2008.34.153 CrossRefGoogle Scholar
  65. Sorokovikova EG, Tikhonova IV, Belykh OI, Klimenkov IV, Likhoshwai EV (2008) Identification of two cyanobacterial strains isolated from the Kotelnikovskii hot spring of the Baikal rift. Microbiology 77:365–372.  https://doi.org/10.1134/s002626170803017x CrossRefGoogle Scholar
  66. Stoyneva M (2003) Survey on green algae of Bulgarian thermal springs. Biologia-Bratislava 58:563–574Google Scholar
  67. Stoyneva MP, Gärtner G (2004) Taxonomic and ecological notes to the list of green algal species from Bulgarian thermomineral waters. Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck 91:67–89Google Scholar
  68. Strunecky O, Elster J, Komárek J (2010) Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions? Polar Biol 33:1419–1428.  https://doi.org/10.1007/s00300-010-0834-8 CrossRefGoogle Scholar
  69. Strunecky O, Komarek J, Elster J (2012) Biogeography of Phormidium autumnale (Oscillatoriales, Cyanobacteria) in western and central Spitsbergen. Pol Polar Res 33:369–382.  https://doi.org/10.2478/v10183-012-0020-5 CrossRefGoogle Scholar
  70. Strunecky O, Komarek J, Smarda J (2014) Kamptonema (Microcoleaceae, Cyanobacteria), a new genus derived from the polyphyletic Phormidium on the basis of combined molecular and cytomorphological markers. Preslia 86:193–208Google Scholar
  71. Strunecky O, Bohunicka M, Johansen JR, Capkova K, Raabova L, Dvorak P, Komarek J (2017) A revision of the genus Geitlerinema and a description of the genus Anagnostidinema gen. nov (Oscillatoriophycidae, Cyanobacteria). Fottea 17:114–126.  https://doi.org/10.5507/fot.2016.025 CrossRefGoogle Scholar
  72. Szafranski SP, Wos-Oxley ML, Vilchez-Vargas R et al (2015) High-resolution taxonomic profiling of the subgingival microbiome for biomarker discovery and periodontitis diagnosis. Appl Environ Microbiol 81:1047–1058.  https://doi.org/10.1128/aem.03534-14 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169.  https://doi.org/10.1128/aem.69.9.5157-5169.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tomova I, Stoilova-Disheva M, Lyutskanova D, Pascual J, Petrov P, Kambourova M (2010) Phylogenetic analysis of the bacterial community in a geothermal spring, Rupi Basin, Bulgaria. World Microbiol Biotechnol 26:2019–2028.  https://doi.org/10.1007/s11274-010-0386-7 CrossRefGoogle Scholar
  76. Tomova I, Dimitrova D, Stoilova-Disheva M, Lyutskanova D, Kambourova M (2011) Archaeal diversity at two hot springs, Rupite Basin, Bulgaria. Biotechnol Biotechnol Equip 25:105–113.  https://doi.org/10.5504/bbeq.2011.0120 CrossRefGoogle Scholar
  77. Urbieta MS, Gonzalez-Toril E, Bazan AA, Giaveno MA, Donati E (2015) Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquen, Argentina). Extremophiles 19:437–450.  https://doi.org/10.1007/s00792-015-0729-2 CrossRefPubMedGoogle Scholar
  78. van Gremberghe I, Leliaert F, Mergeay J et al (2011) Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS One 6:e19561.  https://doi.org/10.1371/journal.pone.0019561 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267.  https://doi.org/10.1128/aem.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353PubMedPubMedCentralGoogle Scholar
  81. Ward DM, Bateson MM, Ferris MJ, Kuhl M, Wieland A, Koeppel A (2006) Cyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as species-like units linking microbial community composition, structure and function. Philos Trans Roy Soc Lond B 361:1997–2008CrossRefGoogle Scholar
  82. Ward DM, Castenholz RW, Miller SR (2012) Cyanobacteria in geothermal habitats. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, Dordrecht, pp 39–63.  https://doi.org/10.1007/978-94-007-3855-3_3 CrossRefGoogle Scholar
  83. Ward LM, Idei A, Terajima S, Kakegawa T, Fischer WW, McGlynn SE (2017) Microbial diversity and iron oxidation at Okuoku-hachikurou Onsen, a Japanese hot spring analog of Precambrian iron formations. Geobiology 15:817–835.  https://doi.org/10.1111/gbi.12266 CrossRefPubMedGoogle Scholar
  84. Wilmotte A, Van der Auwera G, De Wachter R (1993) Structure of the 16 S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis. FEBS Lett 317:96–100CrossRefGoogle Scholar
  85. Yilmaz C (2016) Analysis of cyanobacterial diversity of some hot springs in Afyonkarahisar, Turkey. App Ecol Env Res 14:463–484.  https://doi.org/10.15666/aeer/1402_463484 CrossRefGoogle Scholar
  86. Zammit G, Billi D, Albertano P (2012) The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov.: a cytomorphological and molecular description. Eur Phycol 47:341–354.  https://doi.org/10.1080/09670262.2012.717106 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Otakar Strunecký
    • 1
    • 9
  • Karel Kopejtka
    • 2
  • Franz Goecke
    • 2
    • 4
  • Jürgen Tomasch
    • 5
  • Jaromír Lukavský
    • 3
  • Amir Neori
    • 6
  • Silke Kahl
    • 7
  • Dietmar H. Pieper
    • 7
  • Plamen Pilarski
    • 8
  • David Kaftan
    • 2
    • 9
  • Michal Koblížek
    • 2
  1. 1.Institute of Aquaculture, CENAKVA, Faculty of Fisheries and Protection of WatersUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Center AlgatechInstitute of Microbiology CASTřeboňCzech Republic
  3. 3.Department of Plant EcologyInstitute of Botany CASTřeboňCzech Republic
  4. 4.Department of Plant and Environmental ScienceNorwegian University of Life SciencesÅsNorway
  5. 5.Group Microbial CommunicationHelmholtz Centre for Infection ResearchBrunswickGermany
  6. 6.Israel Oceanographic and Limnological Research Ltd., National Center for MaricultureEilatIsrael
  7. 7.Group Microbial Interactions and ProcessesHelmholtz Centre for Infection ResearchBrunswickGermany
  8. 8.Institute of Plant Physiology and Genetics BASSofiaBulgaria
  9. 9.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations