, Volume 22, Issue 6, pp 943–954 | Cite as

Characterization of protistan plankton diversity in ancient salt evaporation ponds located in a volcanic crater on the island Sal, Cape Verde

  • Feng Zhao
  • Sabine FilkerEmail author
Original Paper


Salinity is an important factor when exploring the limits known for life. Therefore, hypersaline systems have attracted much attention in recent years. In this study, we investigated the protistan diversity and community composition in two natural salt evaporation ponds (27–30% salinity) located in an ancient volcanic crater on the Cape Verde island Sal using high-throughput DNA sequencing. Our study revealed a broad range of protistan taxa and a high taxonomic diversity within the Ciliophora, Dinophyceae, and Chlorophyta. We detected a total of 23 Dinophyceae families, although Dinophyceae were generally considered to be only this diverse in aquatic environments of less than 10% salinity. Moreover, we uncovered a high degree of genetic novelty in this habitat. The mean similarity of all detected OTUs to previously described sequences was only 93.6%. These findings strongly dispute the traditional view that extreme hypersaline environments generally maintain low protistan diversity. A meta-analysis covering our and previously published data from other inland and coastal salt ponds clearly showed that our samples clustered according to salinity and not biogeography. This result further supports the claim that salinity is a major transition boundary for protistan communities, regardless of their biogeographic origin.


Biogeography Diversity Halophiles High-throughput DNA sequencing Hypersaline environments Protists 



This research was funded by a grant from the TU Nachwuchsring to SF. Research of FZ was supported by the China Scholarship Council (CSC, No. 201604910395). Samples were collected during a research cruise with R/V Meteor (M118) funded by the DFG Senatskommission. We thank Thorsten Stoeck (University of Technology Kaiserslautern) for his help with sample collection. Data analysis was performed on the high-performance computing cluster “Elwetritsch” at the University of Kaiserslautern supported by an AHRP Grant to SF.

Supplementary material

792_2018_1050_MOESM1_ESM.xlsx (11 kb)
Supplementary material 1 (XLSX 11 kb)


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Boomer I, Aladin N, Plotnikov I, Whatley R (2000) The palaeolimnology of the Aral Sea: a review. Quaternary Sci Rev 19:1259–1278. CrossRefGoogle Scholar
  3. Buck K, Barry J, Simpson A (2000) Monterey Bay cold seep biota: euglenozoa with chemoautotrophic bacterial epibionts. Eur J Protistol 36:117–126CrossRefGoogle Scholar
  4. Butschinsky P (1897) Die Protozoenfauna der Salzseelimane bei Odessa. Zool Anz 20:194–197Google Scholar
  5. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Casamayor EO, Triadó-Margarit X, Castaneda C (2013) Microbial biodiversity in saline shallow lakes of the Monegros Desert, Spain. FEMS Microb Ecol 85:503–518. CrossRefGoogle Scholar
  7. Clark DR, Mathieu M, Mourot L, Dufossé L, Underwood GJC, Dumbrell AJ, McGenity TJ (2017) Biogeography at the limits of life: do extremophilic microbial communities show biogeographical regionalization? Glob Ecol Biogeogr 26:1435–1446. CrossRefGoogle Scholar
  8. Curry R, Dickson B, Yashayaev I (2003) A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426:826. CrossRefPubMedPubMedCentralGoogle Scholar
  9. de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury JM, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horak A, Jaillon O, Lima-Mendez G, Lukes J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E, Tara Oceans C (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:6237. CrossRefGoogle Scholar
  10. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Edgcomb V, Orsi W, Leslin C, Epstein SS, Bunge J, Jeon S, Yakimov MM, Behnke A, Stoeck T (2009) Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea. Extremophiles 13:151–167. CrossRefPubMedGoogle Scholar
  12. Elloumi J, Carrias JF, Ayadi H, Sime-Ngando T, Boukhris M, Bouain A (2006) Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia. Estuar Coast Shelf Sci 67:21–29. CrossRefGoogle Scholar
  13. Elloumi J, Carrias JF, Ayadi H, Sime-Ngando T, Bouain A (2009) Communities structure of the planktonic halophiles in the solar saltern of Sfax, Tunisia. Estuar Coast Shelf Sci 81:19–26. CrossRefGoogle Scholar
  14. Entz G (1879) Ueber einige Infusorien des Salzteiches zu Szamosfalva. Természetr Füz 3:33–72Google Scholar
  15. Entz G (1904) Die Fauna der kontinentalen Kochsalzwässer. Math Naturwissen Ber Ungarn 19:89–124Google Scholar
  16. Filker S, Gimmler A, Dunthorn M, Mahé F, Stoeck T (2015) Deep sequencing uncovers protistan plankton diversity in the Portuguese Ria Formosa solar saltern ponds. Extremophiles 19:283–295. CrossRefPubMedGoogle Scholar
  17. Filker S, Forster D, Weinisch L, Mora-Ruiz M, Gonzalez B, Farias ME, Rossello-Mora R, Stoeck T (2017) Transition boundaries for protistan species turnover in hypersaline waters of different biogeographic regions. Environ Microbiol 19:3186–3200. CrossRefPubMedGoogle Scholar
  18. Florentin MR (1899) Études sur la fauna des mares salées de Lorraine. Ann Sci Nat Zool 10:209–350Google Scholar
  19. Foissner W, Jung JH, Filker S, Rudolph J, Stoeck T (2014a) Morphology, ontogenesis and molecular phylogeny of Platynematum salinarum nov spec., a new scuticociliate (Ciliophora, Scuticociliatia) from a solar saltern. Eur J Protistol 50:174–184. CrossRefPubMedGoogle Scholar
  20. Foissner W, Filker S, Stoeck T (2014b) Schmidingerothrix salinarum nov. spec. is the molecular sister of the large oxytrichid clade (Ciliophora, Hypotricha). J Eukaryot Microbiol 61:61–74. CrossRefPubMedGoogle Scholar
  21. Fotedar R, Stoeck T, Filker S, Fell JW, Agatha S, Al Marri M, Jiang J (2016) Description of the halophile Euplotes qatarensis nov. spec. (Ciliophora, Spirotrichea, Euplotida) isolated from the hypersaline Khor Al-Adaid Lagoon in Qatar. J Eukaryot Microbiol 63:578–590. CrossRefPubMedGoogle Scholar
  22. Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459:193–199. CrossRefPubMedGoogle Scholar
  23. Ghai R, Pasic L, Fernández AB, Martin-Cuadrado AB, McMahon KD, Papke RT, Stepanauskas R, Rodriguez-Brito B, Rohwer F, Sánchez-Porro C, Ventosa A, Rodríguez-Valera F (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:135. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gong J, Dong J, Liu X, Massana R (2013) Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of Oligotrich and Peritrich Ciliates. Protist 164:369–379. CrossRefPubMedGoogle Scholar
  25. Gunde-Cimerman N, Oren A, Plemenitaš A (2005) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya, vol 9. Springer, DordrechtCrossRefGoogle Scholar
  26. Harding T, Simpson AGB (2018) Recent advances in halophilic protists. J Eukaryot Microbiol. CrossRefPubMedGoogle Scholar
  27. Harris JK, Caporaso JG, Walker JJ, Spear JR, Gold NJ, Robertson CE, Hugenholtz P, Goodrich J, McDonald D, Knights D, Marshall P, Tufo H, Knight R, Pace NR (2012) Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J 1:11. CrossRefGoogle Scholar
  28. Heidelberg KB, Nelson WC, Holm JB, Eisenkol N, Andrade K, Emerson JB (2013) Characterization of eukaryotic microbial diversity in hypersaline Lake Tyrrell, Australia. Front Microbiol 4:115. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Javor B (1989) Hypersaline environments. Microbiology and biogeochemistry. Springer, BerlinCrossRefGoogle Scholar
  30. Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439. CrossRefPubMedGoogle Scholar
  31. Kirby H (1932) Two protozoa from brine. Trans Am Microsc Soc 51:8–15CrossRefGoogle Scholar
  32. Kunte HJ, Trüper H, Stan-Lotter H (2002) Halophilic microorganisms. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions of life. Springer, Berlin, pp 185–200CrossRefGoogle Scholar
  33. Layburn-Parry J, Bell EM, Roberts EC (2000) Protozoan growth rates in Antarctic lakes. Polar Biol 23:445–451CrossRefGoogle Scholar
  34. Lei Y, Xu K, Choi JK, Hong HP, Wickham SA (2009) Community structure and seasonal dynamics of planktonic ciliates along salinity gradients. Eur J Protistol 45:305–319. CrossRefPubMedGoogle Scholar
  35. Logares R, Audic S, Bass D, Bittner L, Boutte C, Christen R, Claverie JM, Decelle J, Dolan JR, Dunthorn M, Edvardsen B, Gobet A, Kooistra WHCF, Mahe F, Not F, Ogata H, Pawlowski J, Pernice MC, Romac S, Shalchian-Tabrizi K, Simon N, Stoeck T, Santini S, Siano R, Wincker P, Zingone A, Richards TA, de Vargas C, Massana R (2014) Patterns of rare and abundant marine microbial eukaryotes. Curr Biol 24:813–821. CrossRefPubMedGoogle Scholar
  36. Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M (2015) Swarm v2: highly-scalable and high-resolution amplicon clustering. Peer J. CrossRefPubMedGoogle Scholar
  37. Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, Chambouvet A, Christen R, Claverie JM, Decelle J, Dolan JR, Dunthorn M, Edvardsen B, Forn I, Forster D, Guillou L, Jaillon O, Kooistra WHCF, Logares R, Mahe F, Not F, Ogata H, Pawlowski J, Pernice MC, Probert I, Romac S, Richards T, Santini S, Shalchian-Tabrizi K, Siano R, Simon N, Stoeck T, Vaulot D, Zingone A, de Vargas C (2015) Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol 17:4035–4049. CrossRefPubMedGoogle Scholar
  38. Namyslowski B (1913) Über unbekannte halophile Mikroorganismen aus dem Innern des Salzbergwerkes Wieliczka. Bull Int Acad Sci Krakow B 3(4):88–104Google Scholar
  39. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) vegan: Community Ecology Package. R package version 2.4–4. Accessed Oct 2017
  40. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biot 28:56–63. CrossRefGoogle Scholar
  41. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pan H, Stoeck T (2017) Redescription of the halophile ciliate, Blepharisma halophilum Ruinen, 1938 (Ciliophora, Heterotrichea, Heterotrichida) shows that the genus Blepharisma is non-monophyletic. Eur J Protistol 61:20–28. CrossRefPubMedGoogle Scholar
  43. Park JS, Cho BC, Simpson AGB (2006) Halocafeteria seosinensis gen. et sp nov (Bicosoecida), a halophilic bacterivorous nanoflagellate isolated from a solar saltern. Extremophiles 10:493–504. CrossRefPubMedGoogle Scholar
  44. Patterson DJ, Simpson AGB (1996) Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. Eur J Protistol 32:423–448. CrossRefGoogle Scholar
  45. Pedrós-Alió C (2004) Trophic ecology of solar salterns. In: Ventosa A (ed) Halophilic microorganisms. Spriner-Verlag, Berlin, pp 33–48CrossRefGoogle Scholar
  46. Pedrós-Alió C (2005) Diversity of microbial communities: the case of solar salterns. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Netherlands, pp 71–90CrossRefGoogle Scholar
  47. Pedrós-Alió C (2012) The rare bacterial biosphere. Annu Rev Mar Sci 4:449–466. CrossRefGoogle Scholar
  48. Pedrós-Alió C, Calderon-Paz JI, MacLean MH, Medina G, Marrase C, Gasol JM, Guixa-Boixereu N (2000) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155. CrossRefPubMedGoogle Scholar
  49. Por F (1980) A classification of hypersaline waters, based on trophic criteria. Mar Ecol 1:121–131CrossRefGoogle Scholar
  50. Ruinen J (1938) Notizen über Salzflagellaten. II. Über die Verbreitung der Salzflagellaten. Arch Protistenkd 90:210–258Google Scholar
  51. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Anton Leeuw Int J G 81:293–308CrossRefGoogle Scholar
  53. Sime-Ngando T, Grolière CA (1991) Quantitative effects of fixatives on the storage of freshwater planktonic ciliates. Arch Protistenk 140:109–120CrossRefGoogle Scholar
  54. Sime-Ngando T, Hartmann HJ, Grolière CA (1990) Rapid quantification of planktonic ciliates: comparison of improved live counting with other methods. Appl Environ Microbiol 56:2234–2242PubMedPubMedCentralGoogle Scholar
  55. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120. CrossRefPubMedGoogle Scholar
  56. Stock A, Breiner HW, Pachiadaki M, Edgcomb V, Filker S, La Cono V, Yakimov MM, Stoeck T (2012) Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16:21–34. CrossRefPubMedGoogle Scholar
  57. Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner HW, Richards TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19:21–31. CrossRefPubMedGoogle Scholar
  58. Triadó-Margarit X, Casamayor EO (2013) High genetic diversity and novelty in planktonic protists inhabiting inland and coastal high salinity water bodies. FEMS Microbiol Ecol 85:27–36. CrossRefPubMedGoogle Scholar
  59. Ventosa A (2006) Unusual micro-organisms from unusual environments. In: Logan NA, Lappin-Scott HM, Oyston P (eds) SGM Symposium 66: Prokaryotic diversity—mechanisms and significance. Cambridge University Press, Cambridge, pp 223–253CrossRefGoogle Scholar
  60. Volcani B (1944) The microorganisms of the Dead Sea. Papers collected to commemorate the 70th anniversary of Dr. Chaim Weizmann. Daniel Sieff Research Institute, Rehovoth, pp 71–85Google Scholar
  61. Wang J, Wang F, Chu L, Wang H, Zhong Z, Liu Z, Gao J, Duan H (2014) High genetic diversity and novelty in eukaryotic plankton assemblages inhabiting saline lakes in the Qaidam basin. PLoS One 9:e112812. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Weber APM, Horst RJ, Barbier GG, Oesterhelt C (2007) Metabolism and metabolomics of eukaryotes living under extreme conditions. Int Rev Cytol 256:1–34. CrossRefPubMedGoogle Scholar
  63. Wu Q, Chatzinotas A, Wang J, Boenigk J (2009) Genetic diversity of eukaryotic plankton assemblages in Eastern Tibetan Lakes differing by their salinity and altitude. Microb Ecol 58:569–581. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate illumina Paired-End reAd mergeR. Bioinformatics 30:614–620. CrossRefPubMedGoogle Scholar
  65. Zhao F, Xu K (2017) Distribution of ciliates in intertidal sediments across geographic distances: a molecular view. Protist 168:171–182. CrossRefPubMedGoogle Scholar
  66. Zhao F, Filker S, Xu K, Huang P, Zheng S (2017) Patterns and drivers of vertical distribution of the ciliate community from the surface to the abyssopelagic zone in the Western Pacific Ocean. Front Microbiol 8:2559. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Department of Molecular EcologyUniversity of Technology KaiserslauternKaiserslauternGermany

Personalised recommendations