, Volume 22, Issue 6, pp 931–941 | Cite as

Resistance and Raman spectroscopy analysis of Parageobacillus thermantarcticus spores after γ-ray exposure

  • Ida Romano
  • Annalisa De Angelis
  • Annarita Poli
  • Pietro Ragni
  • Laura Lilla
  • Gianluigi Zito
  • Barbara Nicolaus
  • Anna Chiara De LucaEmail author
  • Paola Di DonatoEmail author
Original Paper


Spores of the genus Bacillus are able to resist ionizing radiations and therefore they are a suitable biological model for studies in Astrobiology, i.e. the multidisciplinary approach to the study of the origin and evolution of life on Earth and in the universe. The resistance to γ-radiation is an important issue in Astrobiology in relation to the search for bacterial species that could adapt to life in space. This study investigates the resistance of spores of the thermophilic bacteria Parageobacillus thermantarcticus to γ-rays. The analysis of spores’ response to irradiation at a molecular level is performed by means of Raman spectroscopy that allows to get insights in the sequence of events taking place during inactivation. The role of the γ-rays’ dose in the inactivation of spores is also investigated, allowing to highlight the mechanism(s) of inactivation including DNA damage, protein denaturation and calcium dipicolinate levels.


Astrobiology Raman spectroscopy Thermophiles γ-rays resistance Bacillus 



Annalisa De Angelis and Ida Romano contributed equally to this work.


  1. Aliyu H, Lebre P, Blom J, Cowan D, De Maayer P (2016) Phylogenomic re-assessment of the thermophilic genus Geobacillus. Syst Appl Microbiol 39(8):527–533CrossRefPubMedGoogle Scholar
  2. Blatchley ER, Meeusen A, Aronson AI, Brewster L (2005) Inactivation of Bacillus Spores by ultraviolet or gamma radiation. J Environ Eng 131:1245–1252CrossRefGoogle Scholar
  3. Chan JW, Taylor DS, Zwerdling T, Lane SM, Ihara K, Huser T (2006) Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophys J 90(2):648–656CrossRefPubMedGoogle Scholar
  4. Coleman WH, Chen D, Li YQ, Cowan AE, Setlow P (2007) How moist heat kills spores of Bacillus subtilis. J Bacteriol 189(23):8458–8466CrossRefPubMedPubMedCentralGoogle Scholar
  5. Coorevits A, Dinsdale AE, Halket G, Lebbe L, De Vos P, Van Landschoot A, Logan NA (2012) Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly ‘thermoglucosidasius’); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Microbiol 62(Pt 7):1470–1485CrossRefPubMedGoogle Scholar
  6. Crow P, Stone N, Kendall CA, Uff JS, Farmer JA, Barr H, Wright MP (2003) The use of Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro. Br J Cancer 89(1):106–108CrossRefPubMedPubMedCentralGoogle Scholar
  7. Culha M, Adigüzel A, Yazici MM, Kahraman M, Sahin F, Güllüce M (2008) Characterization of thermophilic bacteria using surface-enhanced Raman scattering. Appl Spectrosc 62(11):1226–1232CrossRefPubMedGoogle Scholar
  8. De Angelis A, Managò S, Ferrara MA, Napolitano M, Coppola G, De Luca AC (2017) Combined Raman spectroscopy and digital holographic microscopy for sperm cell quality analysis. J Spectrosc. CrossRefGoogle Scholar
  9. De Gelder J, Scheldeman P, Leus K, Heyndrickx M, Vandenabeele P, Moens L, De Vos P (2007) Raman spectroscopic study of bacterial endospores. Anal Bioanal Chem 389(7–8):2143–2151CrossRefPubMedGoogle Scholar
  10. De Luca AC, Managò S, Ferrara MA, Rendina I, Sirleto L, Puglisi R, Balduzzi D, Galli A, Ferraro P, Coppola G (2014a) Non-invasive sex assessment in bovine semen by Raman spectroscopy. Laser Phys Lett 11:055604CrossRefGoogle Scholar
  11. De Luca AC, Reader-Harris P, Mazilu M, Mariggiò S, Corda D, Di Falco A (2014b) Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures. ACS Nano 8(3):2575–2583CrossRefPubMedGoogle Scholar
  12. Di Cristo C, Di Donato P, Palumbo A, d’Ischia M, Paolucci M, Di Cosmo A (2010) Steroidogenesis in the brain of Sepia officinalis and Octopus vulgaris. Front Biosci Elite 2:673–683Google Scholar
  13. Di Donato P, Romano I, Mastascusa V, Poli A, Orlando P, Pugliese M, Nicolaus B (2018) Survival and Adaptation of the thermophilic species Geobacillus thermantarcticus in simulated spatial conditions. Orig Life Evol Biosph 48(1):141–158CrossRefPubMedGoogle Scholar
  14. Farkas J, Andrássy E, Formanek Z, Mészáros L (2002) Luminometric and differential scanning calorimetry (DSC) studies on heat- and radiation inactivation of Bacillus subtilis luxAB spores. Acta Microbiol Immunol Hung 49(1):141–150CrossRefPubMedGoogle Scholar
  15. Ferrara MA, Di Caprio G, Managò S, De Angelis A, Sirleto L, Coppola G, De Luca AC (2015) Label-free imaging and biochemical characterization of bovine sperm cells. Biosensors 5(2):141–157CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ferrara MA, De Angelis A, De Luca AC, Coppola G, Dale B, Coppola G (2016) Simultaneous holographic microscopy and Raman spectroscopy monitoring of human spermatozoa photodegradation. IEEE J Sel Top Quantum Electron 22:27–34CrossRefGoogle Scholar
  17. Ghosal D, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Venkateswaran A, Zhai M, Kostandarithes HM, Brim H, Makarova KS, Wackett LP, Fredrickson JK, Daly MJ (2005) How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol Rev 29(2):361–375PubMedGoogle Scholar
  18. Hayashi T, Takizawa H, Todoriki S, Suzuki T, Takama K (1994) Comparative effects of gamma rays and electron beams on spores of Bacillus pumilus. Radiat Res 137(2):186–189CrossRefPubMedGoogle Scholar
  19. Hayes CS, Illades-Aguiar B, Casillas-Martinez L, Setlow P (1998) In vitro and in vivo oxidation of methionine residues in small, acid-soluble proteins form Bacillus species. J Bacteriol 180(10):2694–2700PubMedPubMedCentralGoogle Scholar
  20. Horneck G, Walter N, Westall F, Grenfell JL, Martin WF, Gomez F, Leuko S, Lee N, Onofri S, Tsiganis K, Saladino R, Pilat-Lohinger E, Palomba E, Harrison J, Rull F, Muller C, Strazzulla G, Brucato JR, Rettberg P, Capria MT (2016) AstRoMap European astrobiology roadmap. Astrobiology 16:201–243CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hu Z, Wang X, Wang W, Zhang Z, Gao H, Mao Y (2015) Raman spectroscopy for detecting supported planar lipid bilayers composed of ganglioside-GM1/sphingomyelin/cholesterol in the presence of amyloid-β. Phys Chem Chem Phys 17:22711–22720CrossRefPubMedGoogle Scholar
  22. Ito H, Watanabe H, Takehisa M, Iizuka H (1983) Isolation and identification of radiation-resistant cocci belonging to the genus Deinococcus from sewage sludges and animal feeds. Agric Biol Chem 47:1239–1247Google Scholar
  23. Jensen RL, Arnbjerg J, Ogilby PR (2012) Reaction of singlet oxygen with tryptophan in proteins: a pronounced effect of the local environment on the reaction rate. J Am Chem Soc 134(23):9820–9826CrossRefPubMedGoogle Scholar
  24. Jess PR, Smith DD, Mazilu M, Dholakia K, Riches AC, Herrington CS (2007) Early detection of cervical neoplasia by Raman spectroscopy. Int J Cancer 121(12):2723–2728CrossRefPubMedGoogle Scholar
  25. Kminek G, Bada JL (2006) The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet Sci Lett 245:1–5CrossRefGoogle Scholar
  26. Kong L, Zhang P, Setlow P, Li Y (2011) Multifocus confocal Raman microspectroscopy for rapid single-particle analysis. J Biomed Opt 16:120503CrossRefPubMedGoogle Scholar
  27. Kong L, Setlow P, Li Y (2012) Analysis of the Raman spectra of Ca2+-dipicolinic acid alone and in the bacterial spore core in both aqueous and dehydrated environments. Analyst 137:3683–3689CrossRefPubMedGoogle Scholar
  28. Kosmeier S, Zolotovskaya S, De Luca AC, Riches A, Herrington CS, Dholakia K, Mazilu M (2014) Nonredundant Raman imaging using optical eigenmodes. Optica 1(4):257–263CrossRefGoogle Scholar
  29. Managò S, Migliaccio N, Terracciano M, Napolitano M, Martucci NM, De Stefano L, Rendina I, De Luca AC, Lamberti A, Rea I (2018) Internalization kinetics and cytoplasmic localization of functionalized diatomite nanoparticles in cancer cells by Raman imaging. J Biophotonics 11(4):e201700207. CrossRefPubMedGoogle Scholar
  30. Managò S, Valente C, Mirabelli P, Circolo D, Basile F, Corda D, De Luca AC (2016) A reliable Raman-spectroscopy-based approach for diagnosis, classification and follow-up of B-cell acute lymphoblastic leukemia. Sci Rep 6:24821CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mastascusa V, Romano I, Di Donato P, Poli A, Della Corte V, Rotundi A, Bussoletti E, Quarto M, Pugliese M, Nicolaus B (2014) Extremophiles survival to simulated space conditions: an astrobiology model study. Orig Life Evol Biosph 44(3):231–237CrossRefPubMedGoogle Scholar
  32. Moeller R, Reitz G, Li Z, Klein S, Nicholson WL (2012) Multifactorial resistance of Bacillus subtilis spores to high-energy proton radiation: role of spore structural components and the homologous recombination and non-homologous end joining DNA repair pathways. Astrobiology 12(11):1069–1077CrossRefPubMedPubMedCentralGoogle Scholar
  33. Murray RGE (1992) The Family Deinococcaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 3732–3744CrossRefGoogle Scholar
  34. Nelson WH, Dasari R, Feld M, Sperry JF (2004) Intensities of calcium dipicolinate and Bacillus subtilis spore Raman spectra excited with 244 nm light. Appl Spectrosc 58(12):1408–1412CrossRefPubMedGoogle Scholar
  35. Nicholson WL, Schuerger AC (2005) Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia. Astrobiology 5(4):536–544CrossRefPubMedGoogle Scholar
  36. Nickerson K, Bulla L, Mounts T (1975) Lipid metabolism during bacterial growth, sporulation, and germination: differential synthesis of individual branched and normal-chain fatty acids during spore germination and outgrowth of Bacillus thuringiensis. J Bacteriol 124(3):1256–1262PubMedPubMedCentralGoogle Scholar
  37. Nicolaus B, Lama L, Esposito E, Manca MC, Gambacorta A, di Prisco G (1996) “Bacillus thermoantarcticus” sp. nov., from mount Melbourne, Antarctica: a novel thermophilic species. Polar Biol 16(2):101–104Google Scholar
  38. Nicolaus B, Poli A, Di Donato P, Romano I, Laezza G, Gioiello A, Ulgiati S, Fratianni F, Nazzaro F, Orlando P, Dumontet S (2016) Pb2+ effects on growth, lipids, and protein and DNA profiles of the thermophilic bacterium Thermus Thermophilus. Microorganisms 4(4):45CrossRefPubMedCentralGoogle Scholar
  39. Noothalapati H, Sasaki T, Kaino T, Kawamukai M, Ando M, Hamaguchi HO, Yamamoto T (2016) Label-free chemical imaging of fungal spore walls by Raman microscopy and multivariate curve resolution. Anal Sci Rep 6:27789CrossRefGoogle Scholar
  40. Rebrošová K, Šiler M, Samek O, Růžička F, Bernatová S, Holá V, Ježek J, Zemánek P, Sokolová J, Petráš P (2017) Rapid identification of staphylococci by Raman spectroscopy. Sci Rep 7(1):14846CrossRefPubMedPubMedCentralGoogle Scholar
  41. Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101(3):514–525CrossRefPubMedGoogle Scholar
  42. Stöckel S, Schumacher W, Meisel S, Elschner M, Rösch P, Popp J (2010) Raman spectroscopy-compatible inactivation method for pathogenic endospores. J Appl Environ Microbiol 76(9):2895–2907CrossRefGoogle Scholar
  43. Teh SK, Zheng W, Ho KY, Teh M, Yeoh KG, Huang Z (2008) Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue. Br J Cancer 98(2):457–465CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wang S, Doona CJ, Setlow P, Li YQ (2016) Use of Raman spectroscopy and phase-contrast microscopy to characterize cold atmospheric plasma inactivation of individual bacterial spores. Appl Environ Microbiol 82(19):5775–5784CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wieland K, Kuligowski J, Ehgartner D, Ramer G, Koch C, Ofner J, Herwig C, Lendl B (2017) Oward a noninvasive, label-free screening method for determining spore inoculum quality of Penicillium chrysogenum using Raman spectroscopy. Appl Spectrosc 71(12):2661–2669CrossRefPubMedGoogle Scholar
  46. Zhang P, Kong L, Setlow P, Li YQ (2010) Characterization of wet-heat inactivation of single spores of Bacillus species by dual-trap Raman spectroscopy and elastic light scattering. Appl Environ Microbiol 76(6):1796–1805CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Ida Romano
    • 1
  • Annalisa De Angelis
    • 2
  • Annarita Poli
    • 1
  • Pietro Ragni
    • 3
  • Laura Lilla
    • 3
  • Gianluigi Zito
    • 2
  • Barbara Nicolaus
    • 1
  • Anna Chiara De Luca
    • 2
    Email author
  • Paola Di Donato
    • 1
    • 4
    Email author
  1. 1.Institute of Biomolecular ChemistryNational Research Council of ItalyPozzuoli, NaplesItaly
  2. 2.Institute of Protein BiochemistryNational Research Council of ItalyNaplesItaly
  3. 3.Institute of Chemical MethodologiesResearch Area of Rome, National Council Research of ItalyMonterotondo S.Italy
  4. 4.Department of Science and TechnologyUniversity of Naples “Parthenope”, Centro Direzionale Isola C4NaplesItaly

Personalised recommendations