Advertisement

Extremophiles

, Volume 22, Issue 6, pp 839–849 | Cite as

The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes

  • Karel Kopejtka
  • Jürgen Tomasch
  • Boyke Bunk
  • Cathrin Spröer
  • Irene Wagner-Döbler
  • Michal Koblížek
Original Paper
  • 131 Downloads

Abstract

Soda lakes, with their high salinity and high pH, pose a very challenging environment for life. Microorganisms living in these harsh conditions have had to adapt their physiology and gene inventory. Therefore, we analyzed the complete genome of the haloalkaliphilic photoheterotrophic bacterium Rhodobaca barguzinensis strain alga05. It consists of a 3,899,419 bp circular chromosome with 3624 predicted coding sequences. In contrast to most of Rhodobacterales, this strain lacks any extrachromosomal elements. To identify the genes responsible for adaptation to high pH, we compared the gene inventory in the alga05 genome with genomes of 17 reference strains belonging to order Rhodobacterales. We found that all haloalkaliphilic strains contain the mrpB gene coding for the B subunit of the MRP Na+/H+ antiporter, while this gene is absent in all non-alkaliphilic strains, which indicates its importance for adaptation to high pH. Further analysis showed that alga05 requires organic carbon sources for growth, but it also contains genes encoding the ethylmalonyl-CoA pathway for CO2 fixation. Remarkable is the genetic potential to utilize organophosphorus compounds as a source of phosphorus. In summary, its genetic inventory indicates a large flexibility of the alga05 metabolism, which is advantageous in rapidly changing environmental conditions in soda lakes.

Keywords

Element cycles Genome annotation Haloalkaliphiles Rhodobacterales Soda lake 

Notes

Acknowledgements

The authors are beholden to Dr. Katya Boldareva-Nuyanzina for providing her strain Rca. barguzinensis strain alga05. We also thank Jason Dean B.Sc. for the language revision. We thank Simone Severitt and Nicole Heyer for excellent technical assistance. This research has been supported by the GAČR project P501/12/G055, the DAAD project 57155424, and the MŠMT project Algatech Plus (LO1416). J.T. was supported by the Deutsche Forschungsgemeinschaft (DFG) within the Transregio 51 “Roseobacter”.

Supplementary material

792_2018_1041_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1088 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Antony CP et al (2010) Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact. ISME J 4:1470–1480CrossRefPubMedGoogle Scholar
  3. Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54CrossRefPubMedGoogle Scholar
  4. Bill N et al (2017) Fixation of CO2 using the ethylmalonyl-CoA pathway in the photoheterotrophic marine bacterium Dinoroseobacter shibae. Environ Microbiol 19:2645–2660CrossRefPubMedGoogle Scholar
  5. Boldareva EN et al (2008) Rhodobaca barguzinensis sp. nov., a new alkaliphilic purple nonsulfur bacterium isolated from a soda lake of the Barguzin Valley (Buryat Republic, Eastern Siberia). Microbiology 77:206–218CrossRefGoogle Scholar
  6. Carini SA, Joye SB (2008) Nitrification in Mono Lake, California: activity and community composition during contrasting hydrological regimes. Limnol Oceanogr 53:2546–2557CrossRefGoogle Scholar
  7. Cheesman AW, Turner BL, Ramesh Reddy K (2012) Soil phosphorus forms along a strong nutrient gradient in a tropical ombrotrophic wetland. Soil Sci Soc Am J 76:1496–1506CrossRefGoogle Scholar
  8. Coupe RH, Kalkhoff SJ, Capel PD, Gregoire C (2012) Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag Sci 68:16–30CrossRefPubMedGoogle Scholar
  9. Curson ARJ, Rogers R, Todd JD, Brearley CA, Johnston AWB (2008) Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroides. Environ Microbiol 10:757–767CrossRefPubMedGoogle Scholar
  10. Elser JJ et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142CrossRefPubMedGoogle Scholar
  11. Friedrich CG (1997) Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol 39:235–289CrossRefGoogle Scholar
  12. Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259CrossRefPubMedGoogle Scholar
  13. Fujisawa M, Kusumoto A, Wada Y, Tsuchiya T, Ito M (2005) NhaK, a novel monovalent cation/H + antiporter of Bacillus subtilis. Arch Microbiol 183:411–420CrossRefPubMedGoogle Scholar
  14. Gao F, Zhang CT (2008) Ori-finder: a web-based system for finding oriC s in unannotated bacterial genomes. BMC Bioinform 9:79CrossRefGoogle Scholar
  15. Hoffmann T et al (2012) Synthesis, release, and recapture of compatible solute proline by osmotically stressed Bacillus subtilis cells. Appl Environ Microbiol 78:5753–5762CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kajiyama Y, Otagiri M, Sekiguchi J, Kosono S, Kudo T (2007) Complex formation by the mrpABCDEFG gene products, which constitute a principal Na+/H+ antiporter in Bacillus subtilis. J Bacteriol 189:7511–7514CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462CrossRefPubMedGoogle Scholar
  18. Kelly DP, Shergill JK, Lu WP, Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek 1:95–107CrossRefGoogle Scholar
  19. Koboldt DC et al (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kononova SV, Nesmeyanova MA (2002) Phosphonates and their degradation by microorganisms. Biochemistry (Moscow) 67:184–195CrossRefGoogle Scholar
  21. Kopejtka K et al (2017) Genomic analysis of the evolution of phototrophy among haloalkaliphilic Rhodobacterales. Genome Biol Evol 9:1950–1962CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760CrossRefPubMedPubMedCentralGoogle Scholar
  23. Liu J et al (2005) The activity profile of the NhaD-type Na + (Li +)/H + antiporter from the soda lake haloalkaliphile Alkalimonas amylolytica is adaptive for the extreme environment. J Bacteriol 187:7589–7595CrossRefPubMedPubMedCentralGoogle Scholar
  24. Mesbah NM, Cook GM, Wiegel J (2009) The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na + (K +)/H + antiporters. Mol Microbiol 74:270–281CrossRefPubMedPubMedCentralGoogle Scholar
  25. Meyer B, Imhoff JF, Kuever J (2007) Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria–evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9:2957–2977CrossRefPubMedGoogle Scholar
  26. Moens S, Vanderleyden J (1996) Functions of bacterial flagella. Crit Rev Microbiol 22:67–100CrossRefPubMedGoogle Scholar
  27. Morino M et al (2010) Single site mutations in the hetero-oligomeric Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4 that affect Na+/H+ antiport activity, sodium exclusion, individual Mrp protein levels, or Mrp complex formation. J Biol Chem 285:30942–30950CrossRefPubMedPubMedCentralGoogle Scholar
  28. Namsaraev Z et al (2018) Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter-1 soda lake (Kulunda Steppe, Russia). Extremophiles 22:651–663CrossRefPubMedGoogle Scholar
  29. Oremland RS (2013) A random biogeochemical walk into three soda lakes of the western USA: with an introduction to a few of their microbial denizens. Polyextremophiles. Cellular Origin. Life in Extreme Habitats and Astrobiology. Springer, Dordrecht, Netherlands, pp 179–199CrossRefGoogle Scholar
  30. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedPubMedCentralGoogle Scholar
  31. Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923CrossRefPubMedGoogle Scholar
  32. Sazinsky MH, Lippard SJ (2015) Methane monooxygenase: functionalizing methane at iron and copper. Sustaining life on planet earth: Metalloenzymes mastering dioxygen and other chewy gases. Metal Ions in Life Sciences. Springer, Cham, pp 205–256Google Scholar
  33. Schowanek D, Verstraete W (1990) Phosphonate utilization by bacterial cultures and enrichments from environmental samples. Appl Environ Microbiol 56:895–903PubMedPubMedCentralGoogle Scholar
  34. Schütz M, Shahak Y, Padan E, Hauska G (1997) Sulfide-quinone reductase from Rhodobacter capsulatus purification, cloning, and expression. J Biol Chem 272:9890–9894CrossRefPubMedGoogle Scholar
  35. Sorokin DY (1998) Occurrence of nitrification in extremely alkaline natural habitats. Microbiology 67:404–408Google Scholar
  36. Sorokin DY et al (2013) Halophilic and haloalkaliphilic sulfur-oxidizing bacteria. The prokaryotes. Springer, Berlin, Heidelberg, pp 529–554CrossRefGoogle Scholar
  37. Sorokin DY, Turova TP, Kuznetsov BB, Briantseva IA, Gorlenko VM (2000) Roseinatronobacter thiooxidans gen. nov., sp. nov., a new alkaliphilic aerobic bacteriochlorophyll-alpha-containing bacteria from a soda lake. Mikrobiologiia 69:89–97PubMedGoogle Scholar
  38. Sorokin DY et al (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18:791–809CrossRefPubMedPubMedCentralGoogle Scholar
  39. Spring S (2014) Function and evolution of the sox multienzyme complex in the marine gammaproteobacterium Congregibacter litoralis. ISRN Microbiol 2014:597418.  https://doi.org/10.1155/2014/597418 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Surakasi VP, Antony CP, Sharma S, Patole MS, Shouche YS (2010) Temporal bacterial diversity and detection of putative methanotrophs in surface mats of Lonar crater lake. J Basic Microbiol 50:465–474CrossRefPubMedGoogle Scholar
  41. Swartz TH, Ikewada S, Ishikawa O, Ito M, Krulwich TA (2005) The Mrp system: a giant among monovalent cation/proton antiporters? Extremophiles 9:345–354CrossRefPubMedGoogle Scholar
  42. van de Vossenberg JL, Driessen AJ, Grant D, Konings WN (1999) Lipid membranes from halophilic and alkali-halophilic Archaea have a low H + and Na + permeability at high salt concentration. Extremophiles 3:253–257CrossRefPubMedGoogle Scholar
  43. Wang J et al (2011) Do patterns of bacterial diversity along salinity gradients differ from those observed for macroorganisms? PLoS One 6:e27597CrossRefPubMedPubMedCentralGoogle Scholar
  44. Xiong J et al (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14:2457–2466CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yang LF et al (2006) A Na +/H + antiporter gene of the moderately halophilic bacterium Halobacillus dabanensis D-8T: cloning and molecular characterization. FEMS Microbiol Lett 255:89–95CrossRefPubMedGoogle Scholar
  46. Yao M, Henny C, Maresca JA (2016) Freshwater bacteria release methane as a by-product of phosphorus acquisition. Appl Environ Microbiol 82:6994–7003CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Anoxygenic Phototrophs, Center AlgatechInstitute of Microbiology CASTřeboňCzech Republic
  2. 2.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Department of Molecular BacteriologyHelmholtz Centre for Infection ResearchBraunschweigGermany
  4. 4.Department of Microbial Ecology and Diversity ResearchLeibniz Institute DSMZ - German Collection of Microorganisms and Cell CulturesBraunschweigGermany
  5. 5.Institute of MicrobiologyBraunschweig University of TechnologyBraunschweigGermany

Personalised recommendations