Advertisement

Microbial community composition and dolomite formation in the hypersaline microbial mats of the Khor Al-Adaid sabkhas, Qatar

  • Zach A. DiLoreto
  • Tomaso R. R. Bontognali
  • Zulfa A. Al Disi
  • Hamad Al Saad Al-Kuwari
  • Kenneth H. Williford
  • Christian J. Strohmenger
  • Fadhil Sadooni
  • Christine Palermo
  • John M. Rivers
  • Judith A. McKenzie
  • Michael Tuite
  • Maria DittrichEmail author
Original Paper
  • 60 Downloads

Abstract

The Khor Al-Adaid sabkha in Qatar is among the rare extreme environments on Earth where it is possible to study the formation of dolomite—a carbonate mineral whose origin remains unclear and has been hypothetically linked to microbial activity. By combining geochemical measurements with microbiological analysis, we have investigated the microbial mats colonizing the intertidal areas of sabhka. The main aim of this study was to identify communities and conditions that are favorable for dolomite formation. We inspected and sampled two locations. The first site was colonized by microbial mats that graded vertically from photo-oxic to anoxic conditions and were dominated by cyanobacteria. The second site, with higher salinity, had mats with an uppermost photo-oxic layer dominated by filamentous anoxygenic photosynthetic bacteria (FAPB), which potentially act as a protective layer against salinity for cyanobacterial species within the deeper layers. Porewater in the uppermost layers of the both investigated microbial mats was supersaturated with respect to dolomite. Corresponding to the variation of the microbial community’s vertical structure, a difference in crystallinity and morphology of dolomitic phases was observed: dumbbell-shaped proto-dolomite in the mats dominated by cyanobacteria and rhombohedral ordered-dolomite in the mat dominated by FAPB.

Keywords

Extreme environment Microbial mat Dolomite precipitation Extracellular polymeric substances Sabkha 

Notes

Acknowledgements

This publication was made possible by NPRP Grant 7-443-1-083 from the Qatar National Research Fund (a member of Qatar Foundation). MD was supported by the National Sciences and Engineering Research Council of Canada (NSERC Discovery Grant) and the Canada Foundation for Innovation and Ontario Research Fund (Leaders Opportunity Fund, Grant Number 22404). The statements made herein are solely the responsibility of the authors. The authors would like to acknowledge Oleksandra Kaskun for performing alkalinity measurements, Dr. K. Tait at the Royal Ontario Museum for use of XRD and Sal Boccia at the Ontario Centre for the Characterizations of Advanced Materials (OCCAM) for the assistance with SEM imaging.

Author contribution

All authors contributed to the conception and design of the research. MD, TB, and ZD were responsible for fieldwork. CP participated in fieldwork in March 2016. ZD was responsible for writing the first draft of the manuscript and conducting the laboratory work, and ZD and MD collected the field data. All authors were involved in the interpretation of the data, contributing to sections of the manuscript, as well as revising and approving the final version for submission. All authors agree to be accountable for all aspects of the work and ensuring that questions related to accuracy or integrity of the work are appropriately addressed.

Compliance with ethical standards

Conflict of interest

All of the involved authors have no conflict of interest that would influence the research conducted or conclusions drawn in this manuscript.

Data availability

All datasets generated or analyzed will be made available by request in a timely manner to any qualified researcher. 16S rRNA sequences were submitted for individual samples to the NCBI SRA database and will be available under accession number SRP159889 upon publication.

Supplementary material

792_2018_1074_MOESM1_ESM.xlsx (264 kb)
Supplementary material 1 (XLSX 264 kb)

References

  1. Abed RM, Kohls K, De Beer D (2007) Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf. Environ Microbiol 9:1384–1392CrossRefGoogle Scholar
  2. Anderson KL, Tayne TA, Ward DM (1987) Formation and fate of fermentation products in hot spring cyanobacterial mats. Appl Environ Microbiol 53:2343–2352Google Scholar
  3. Arp G, Helms G, Karlinska K, Schumann G, Reimer A, Reitner J, Trichet J (2012) Photosynthesis versus exopolymer degradation in the formation of microbialites on the atoll of Kiritimati, Republic of Kiribati, Central Pacific. Geomicrobiol J 29:29–65CrossRefGoogle Scholar
  4. Arvidson RS, Mackenzie FT (1999) The dolomite problem; control of precipitation kinetics by temperature and saturation state. Am J Sci 299:257–288CrossRefGoogle Scholar
  5. Benzerara K, Skouri-Panet F, Li J, Férard C, Gugger M, Laurent T, Couradeau E, Ragon M, Cosmidis J, Menguy N (2014) Intracellular Ca–carbonate biomineralization is widespread in cyanobacteria. Proc Natl Acad Sci 111:10933–10938CrossRefGoogle Scholar
  6. Bontognali TR, Vasconcelos C, Warthmann RJ, Dupraz C, Bernasconi SM, McKenzie JA (2008) Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology 36:663–666CrossRefGoogle Scholar
  7. Bontognali TR, Vasconcelos C, Warthmann RJ, Bernasconi SM, Dupraz C, Strohmenger CJ, McKenzie JA (2010) Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates). Sedimentology 57:824–844CrossRefGoogle Scholar
  8. Bontognali TR, Sessions AL, Allwood AC, Fischer WW, Grotzinger JP, Summons RE, Eiler JM (2012) Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc Natl Acad Sci 109:15146–15151CrossRefGoogle Scholar
  9. Bontognali TR, McKenzie JA, Warthmann RJ, Vasconcelos C (2014) Microbially influenced formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria. Terra Nova 26:72–77CrossRefGoogle Scholar
  10. Bontognali TR, Al Disi ZA, Mckenzie JA, Strohmenger CJ, Rivers JM, Dittrich M, Sadooni F, Al-Kuwari HAS (2016) Microbial mats from the Khor Al-Adaid sabkha, Qatar: morphotypes and association with authigenic minerals. In: Qatar Foundation Annual Research Conference Proceedings, vol 1. HBKU Press, Qatar, p EEPP2895Google Scholar
  11. Bosak T, Knoll AH, Petroff AP (2013) The meaning of stromatolites. Annu Rev Earth Planet Sci 41:21–44CrossRefGoogle Scholar
  12. Braissant O, Cailleau G, Dupraz C, Verrecchia EP (2003) Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J Sediment Res 73:485–490CrossRefGoogle Scholar
  13. Brauchli M, McKenzie JA, Strohmenger CJ, Sadooni F, Vasconcelos C, Bontognali TR (2016) The importance of microbial mats for dolomite formation in the Dohat Faishakh sabkha, Qatar. Carbonates Evaporites 31:339–345CrossRefGoogle Scholar
  14. Burow LC, Woebken D, Marshall IP, Lindquist EA, Bebout BM, Prufert-Bebout L, Hoehler TM, Tringe SG, Pett-Ridge J, Weber PK (2013) Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics. ISME J 7:817CrossRefGoogle Scholar
  15. Canfield DE, Des Marais DJ (1993) Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim Cosmochim Acta 57:3971–3984CrossRefGoogle Scholar
  16. Canfield DE, Kristensen E, Thamdrup B (2005) Carbon fixation and phototrophy. Advances in marine biology, vol 48. Elsevier, New York, pp 95–127Google Scholar
  17. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335CrossRefGoogle Scholar
  18. Charlton SR, Parkhurst DL (2011) Modules based on the geochemical model PHREEQC for use in scripting and programming languages. Comput Geosci 37:1653–1663CrossRefGoogle Scholar
  19. Couradeau E, Benzerara K, Gérard E, Moreira D, Bernard S, Brown GE, López-García P (2012) An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336:459–462CrossRefGoogle Scholar
  20. Dittrich M, Sibler S (2010) Calcium carbonate precipitation by cyanobacterial polysaccharides. Geol Soc 336:51–63CrossRefGoogle Scholar
  21. Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162CrossRefGoogle Scholar
  22. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefGoogle Scholar
  23. Edgar RC (2016a) UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv:081257Google Scholar
  24. Edgar R (2016b) SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. BioRxiv:074161Google Scholar
  25. Edgar RC (2018) Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 1:5Google Scholar
  26. Falkowski P, Scholes R, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296CrossRefGoogle Scholar
  27. Gaffey SJ, Bronnimann CE (1993) Effects of bleaching on organic and mineral phases in biogenic carbonates. J Sediment Res 63:4CrossRefGoogle Scholar
  28. Gaisin VA, Kalashnikov AM, Sukhacheva MV, Namsaraev ZB, Barhutova DD, Gorlenko VM, Kuznetsov BB (2015) Filamentous anoxygenic phototrophic bacteria from cyanobacterial mats of Alla hot springs (Barguzin Valley, Russia). Extremophiles 19:1067–1076CrossRefGoogle Scholar
  29. Glover ED (1961) Method of solution of calcareous materials using the complexing agent, EDTA. J Sediment Res 31:622–626CrossRefGoogle Scholar
  30. Hagemann M (2010) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123CrossRefGoogle Scholar
  31. Hammer Ø, Harper D, Ryan P (2001) PAST-palaeontological statistics. http://www.uves/~pardomv/pe/2001_1/past/pastprog/past.pdf, acessadoem, p 25
  32. Harris JK, Caporaso JG, Walker JJ, Spear JR, Gold NJ, Robertson CE, Hugenholtz P, Goodrich J, McDonald D, Knights D (2013) Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J 7:50CrossRefGoogle Scholar
  33. Illing LV, Taylor JC (1993) Penecontemporaneous dolomitization in Sabkha Faishakh, Qatar; evidence from changes in the chemistry of the interstitial brines. J Sediment Res 63:1042–1048Google Scholar
  34. Illing L, Wells A, Taylor J (1965) Penecontemporary dolomite in the Persian Gulf. In: SEPM special publications 13: Dolomitization and Limestone DiagenesisGoogle Scholar
  35. Imhoff JF, Hiraishi A, Süling J (2015) Anoxygenic phototrophic purple bacteria. In: Bergey’s manual of systematics of archaea and bacteria, p 1–23Google Scholar
  36. Ionescu D, Spitzer S, Reimer A, Schneider D, Daniel R, Reitner J, Beer D, Arp G (2015) Calcium dynamics in microbialite-forming exopolymer-rich mats on the atoll of Kiritimati, Republic of Kiribati, Central Pacific. Geobiology 13:170–180CrossRefGoogle Scholar
  37. Javor BJ (2012) Hypersaline environments: microbiology and biogeochemistry. Springer, BerlinGoogle Scholar
  38. Jørgensen BB, Revsbech NP, Blackburn TH, Cohen Y (1979) Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment. Appl Environ Microbiol 38:46–58Google Scholar
  39. Kenward PA, Fowle DA, Goldstein RH, Ueshima M, González LA, Roberts JA (2013) Ordered low-temperature dolomite mediated by carboxyl-group density of microbial cell walls. AAPG Bull 97(11):2113–2125CrossRefGoogle Scholar
  40. Keppen OI, Tourova TP, Kuznetsov BB, Ivanovsky RN, Gorlenko VM (2000) Proposal of Oscillochloridaceae fam. nov. on the basis of a phylogenetic analysis of the filamentous anoxygenic phototrophic bacteria, and emended description of Oscillochloris and Oscillochloris trichoides in comparison with further new isolates. Int J Syst Evol Microbiol 50:1529–1537CrossRefGoogle Scholar
  41. Koblížek M (2015) Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 39:854–870CrossRefGoogle Scholar
  42. Kohls K, Abed RM, Polerecky L, Weber M, De Beer D (2010) Halotaxis of cyanobacteria in an intertidal hypersaline microbial mat. Environ Microbiol 12:567–575CrossRefGoogle Scholar
  43. Kornberg A, Rao NN, Ault-Riche D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125CrossRefGoogle Scholar
  44. Krause S, Liebetrau V, Gorb S, Sánchez-Román M, McKenzie JA, Treude T (2012) Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: new insight into an old enigma. Geology 40:587–590CrossRefGoogle Scholar
  45. Langille MG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814CrossRefGoogle Scholar
  46. Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695CrossRefGoogle Scholar
  47. Lokier SW, Andrade LL, Court WM, Dutton KE, Head IM, van der Land C, Paul A, Sherry A (2017) A new model for the formation of microbial polygons in a coastal sabkha setting. Deposit Record. 3(2):201–208CrossRefGoogle Scholar
  48. McKenzie JA (1991) The dolomite problem: an outstanding controversy controversies in modern geology: evolution of geological theories. Sedimentology. Academic Press, London, pp 37–54Google Scholar
  49. Nutman AP, Bennett VC, Friend CR, Van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535CrossRefGoogle Scholar
  50. Oren A (2015) Cyanobacteria in hypersaline environments: biodiversity and physiological properties. Biodivers Conserv 24:781–798CrossRefGoogle Scholar
  51. Overmann J (2008) Green nonsulfur bacteria. Encyclopedia of life sciences. Wiley, London, pp 1–10Google Scholar
  52. Overmann J, Gemerden H (2000) Microbial interactions involving sulfur bacteria: implications for the ecology and evolution of bacterial communities. FEMS Microbiol Rev 24:591–599CrossRefGoogle Scholar
  53. Paerl H, Pinckney J (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol 31:225–247CrossRefGoogle Scholar
  54. Pages A, Welsh DT, Teasdale PR, Grice K, Vacher M, Bennett WW, Visscher PT (2014) Diel fluctuations in solute distributions and biogeochemical cycling in a hypersaline microbial mat from Shark Bay, WA. Mar Chem 167:102–112CrossRefGoogle Scholar
  55. Parkhurst DL, Appelo C (2013) Description of input and examples for PHREEQC version 3–a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculationsGoogle Scholar
  56. Paulo C, Dittrich M (2013) 2D Raman spectroscopy study of dolomite and cyanobacterial extracellular polymeric substances from Khor Al-Adaid sabkha (Qatar). J Raman Spectrosc 44:1563–1569CrossRefGoogle Scholar
  57. Perri E, Tucker ME, Słowakiewicz M, Whitaker F, Bowen L, Perrotta ID (2018) Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): roles of bacteria, extracellular polymeric substances and viruses. Sedimentology 65:1213–1245CrossRefGoogle Scholar
  58. Petrash DA, Bialik OM, Bontognali TR, Vasconcelos C, Roberts JA, McKenzie JA, Konhauser KO (2017) Microbially catalyzed dolomite formation: from near-surface to burial. Earth Sci Rev 171:558–582CrossRefGoogle Scholar
  59. Pierson BK (2001) Phylum BVI. Chloroflexiphy. nov. Family I. “Chloroflexaceae”. Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin, pp 427–429Google Scholar
  60. Pierson BK, Mitchell HK, Ruff-Roberts AL (1993) Chloroflexus aurantiacus and ultraviolet radiation: implications for archean shallow-water stromatolites. Orig Life Evol Biosph 23:243–260CrossRefGoogle Scholar
  61. Por FD (1980) A classification of hypersaline waters, based on trophic criteria. Mar Ecol 1:121–131CrossRefGoogle Scholar
  62. Qiu X, Wang H, Yao Y, Duan Y (2017) High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52. Earth Planet Sci Lett 472:197–205CrossRefGoogle Scholar
  63. Roberts JA, Kenward PA, Fowle DA, Goldstein RH, González LA, Moore DS (2013) Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Proc Natl Acad Sci 110:14540–14545CrossRefGoogle Scholar
  64. Rodriguez-Blanco JD, Shaw S, Benning LG (2015) A route for the direct crystallization of dolomite. Am Miner 100:1172–1181CrossRefGoogle Scholar
  65. Ronholm J, Schumann D, Sapers H, Izawa M, Applin D, Berg B, Mann P, Vali H, Flemming R, Cloutis E (2014) A mineralogical characterization of biogenic calcium carbonates precipitated by heterotrophic bacteria isolated from cryophilic polar regions. Geobiology 12:542–556CrossRefGoogle Scholar
  66. Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (2014a) The prokaryotes: gammaproteobacteria. Springer, BerlinCrossRefGoogle Scholar
  67. Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (2014b) The prokaryotes: alphaproteobacteria and betaproteobacteria. Springer, BerlinCrossRefGoogle Scholar
  68. Saito MA, Sigman DM, Morel FM (2003) The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the archean-proterozoic boundary? Inorg Chim Acta 356:308–318CrossRefGoogle Scholar
  69. Salman V, Yang T, Berben T, Klein F, Angert E, Teske A (2015) Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh. ISME J 9:2503CrossRefGoogle Scholar
  70. Schneider D, Arp G, Reimer A, Reitner J, Daniel R (2013) Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati Atoll, Central Pacific. PLoS One 8(6):e66662CrossRefGoogle Scholar
  71. Seufferheld MJ, Alvarez HM, Farias ME (2008) Role of polyphosphates in microbial adaptation to extreme environments. Appl Environ Microbiol 74:5867–5874CrossRefGoogle Scholar
  72. Sherwood J, Stagnitti F, Kokkinn M, Williams W (1992) A standard table for predicting equilibrium dissolved oxygen concentrations in salt lakes dominated by sodium chloride. Int J Salt Lake Res 1:1–6CrossRefGoogle Scholar
  73. Słowakiewicz M, Whitaker F, Thomas L, Tucker ME, Zheng Y, Gedl P, Pancost RD (2016) Biogeochemistry of intertidal microbial mats from Qatar: new insights from organic matter characterization. Org Geochem 102:14–29CrossRefGoogle Scholar
  74. Soo RM, Hemp J, Parks DH, Fischer WW, Hugenholtz P (2017) On the origins of oxygenic photosynthesis and aerobic respiration in cyanobacteria. Science 355:1436–1440CrossRefGoogle Scholar
  75. Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365CrossRefGoogle Scholar
  76. Spring S, Brinkmann N, Murrja M, Spröer C, Reitner J, Klenk H-P (2015) High diversity of culturable prokaryotes in a lithifying hypersaline microbial mat. Geomicrobiol J 32:332–346CrossRefGoogle Scholar
  77. Strohmenger CJ, Jameson J (2015) Modern coastal systems of Qatar as analogues for arid climate carbonate reservoirs: improving geological and reservoir modelling. First Break 33:41–50CrossRefGoogle Scholar
  78. Strohmenger CJ, Al-Mansoori A, Al-Jeelani O, Al-Shamry A, Al-Hosani I, Al-Mehsin K, Shebl H (2010) The sabkha sequence at Mussafah Channel (Abu Dhabi, United Arab Emirates): facies stacking patterns, microbial-mediated dolomite and evaporite overprint. GeoArabia 15:49–90Google Scholar
  79. Strohmenger CJ, Shebl H, Al-Mansoori A, Al-Mehsin K, Al-Jeelani O, Al-Hosani I, Al-Shamry A, Al-Baker S (2011) Facies stacking patterns in a modern arid environment: a case study of the Abu Dhabi sabkha in the vicinity of Al-Qanatir Island, United Arab Emirates. In: Alsharhan A, Kendall CGC (eds) Quaternary carbonate and evaporite sedimentary facies and their ancient analogues: a tribute to Douglas James Shearman. International Association of Sedimentologists, Special Publication, Al-Qanatir, pp 149–182Google Scholar
  80. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New YorkGoogle Scholar
  81. Sudhir P, Murthy S (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486CrossRefGoogle Scholar
  82. Tang D, Shi X, Jiang G, Zhang W (2013) Microfabrics in Mesoproterozoic microdigitate stromatolites: evidence of biogenicity and organomineralization at micron and nanometer scales. Palaios 28:178–219CrossRefGoogle Scholar
  83. Tourney J, Ngwenya BT (2014) The role of bacterial extracellular polymeric substances in geomicrobiology. Chem Geol 386:115–132CrossRefGoogle Scholar
  84. Trichet J, Defarge C (1995) Non-biologically supported organomineralization. Bulletin-Institut Oceanographique, Momaco-Numero, pp 203–236Google Scholar
  85. Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tiens AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377:220CrossRefGoogle Scholar
  86. Vasconcelos C, Dittrich M, McKenzie JA (2014) Evidence of microbiocoenosis in the formation of laminae in modern stromatolites. Facies 60:3–13CrossRefGoogle Scholar
  87. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (2011a) Bergey’s manual of systematic bacteriology: volume 2: the proteobacteria. Springer, BerlinGoogle Scholar
  88. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (2011b) Bergey’s manual of systematic bacteriology: volume 3: the firmicutes. Springer, BerlinGoogle Scholar
  89. Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370Google Scholar
  90. Ward DM, Klatt CG, Wood J, Cohan FM, Bryant DA (2012) Functional genomics in an ecological and evolutionary context: maximizing the value of genomes in systems biology. Functional genomics and evolution of photosynthetic systems. Springer, Dordecht, pp 1–16Google Scholar
  91. Warren J (2000) Dolomite: occurrence, evolution and economically important associations. Earth Sci Rev 52:1–81CrossRefGoogle Scholar
  92. Warren JK (2016) Hydrocarbons and evaporites. Evaporites. Springer, Berlin, pp 959–1079Google Scholar
  93. Warthmann R, Van Lith Y, Vasconcelos C, McKenzie JA, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28:1091–1094CrossRefGoogle Scholar
  94. Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem 54:1–29CrossRefGoogle Scholar
  95. Wright DT (1999) The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sed Geol 126:147–157CrossRefGoogle Scholar
  96. Zempolich WG, Baker PA (1993) Experimental and natural mimetic dolomitization of aragonite ooids. J Sediment Res 63:596–606Google Scholar
  97. Zhang F, Xu H, Konishi H, Shelobolina ES, Roden EE (2012) Polysaccharide-catalyzed nucleation and growth of disordered dolomite: a potential precursor of sedimentary dolomite. Am Miner 97:556–567CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Zach A. DiLoreto
    • 1
  • Tomaso R. R. Bontognali
    • 2
    • 3
    • 7
  • Zulfa A. Al Disi
    • 3
  • Hamad Al Saad Al-Kuwari
    • 3
  • Kenneth H. Williford
    • 4
  • Christian J. Strohmenger
    • 5
    • 6
  • Fadhil Sadooni
    • 3
  • Christine Palermo
    • 1
  • John M. Rivers
    • 5
  • Judith A. McKenzie
    • 2
  • Michael Tuite
    • 4
  • Maria Dittrich
    • 1
    Email author
  1. 1.Department of Physical & Environmental SciencesUniversity of Toronto ScarboroughTorontoCanada
  2. 2.Department of Earth SciencesETH ZurichZurichSwitzerland
  3. 3.Qatar UniversityDohaQatar
  4. 4.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  5. 5.ExxonMobil Research QatarDohaQatar
  6. 6.ExxonMobil Production CompanyHoustonUSA
  7. 7.Space Exploration InstituteNeuchatelSwitzerland

Personalised recommendations