, Volume 23, Issue 2, pp 189–200 | Cite as

Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle

  • Vitaly V. Kadnikov
  • Andrey V. Mardanov
  • Alexey V. Beletsky
  • Olga V. Karnachuk
  • Nikolai V. RavinEmail author
Original Paper


Bacteria of candidate phylum OP8 (Aminicenantes) have been identified in various terrestrial and marine ecosystems as a result of molecular analysis of microbial communities. So far, none of the representatives of Aminicenantes have been isolated in a pure culture. We assembled the near-complete genome of a member of Aminicenantes from the metagenome of the 2-km-deep subsurface thermal aquifer in Western Siberia and used genomic data to analyze the metabolic pathways of this bacterium and its ecological role. This bacterium, designated BY38, was predicted to be rod shaped, it lacks flagellar machinery but twitching motility is encoded. Analysis of the BY38 genome revealed a variety of glycosyl hydrolases that can enable utilization of carbohydrates, including chitin, cellulose, starch, mannose, galactose, fructose, fucose, rhamnose, maltose and arabinose. The reconstructed central metabolic pathways suggested that Aminicenantes bacterium BY38 is an anaerobic organotroph capable of fermenting carbohydrates and proteinaceous substrates and performing anaerobic respiration with nitrite. In the deep subsurface aquifer Aminicenantes probably act as destructors of buried organic matter and produce hydrogen and acetate. Based on phylogenetic and genomic analyses, the novel bacterium is proposed to be classified as Candidatus Saccharicenans subterraneum.


Candidate phylum OP8 Aminicenantes Subsurface biosphere Metagenome 



This work was performed using the scientific equipment of the Core Research Facility ‘Bioengineering’ (Research Center of Biotechnology RAS) and supported by the Russian Science Foundation (Grant no. 14-14-01016).

Compliance with ethical standards

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Supplementary material

792_2018_1073_MOESM1_ESM.pdf (148 kb)
Supplementary material 1 (PDF 148 kb)
792_2018_1073_MOESM2_ESM.xls (43 kb)
Supplementary material 2 (XLS 43 kb)


  1. Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31:533–538CrossRefGoogle Scholar
  2. Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146CrossRefGoogle Scholar
  3. Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, Thomas BC, Singh A, Wilkins MJ, Karaoz U, Brodie EL, Williams KH, Hubbard SS, Banfield JF (2016) Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun 7:13219CrossRefGoogle Scholar
  4. Banks D, Frank Y, Kadnikov V, Karnachuk O, Watts M, Boyce A, Frengstad B (2014) Hydrochemical data report from sampling of two deep abandoned hydrocarbon exploration wells: Byelii Yar and Parabel’, Tomsk oblast’, western Siberia, Russian Federation. NGU Report, 2014.034. Geological Survey of Norway, TrondheimGoogle Scholar
  5. Bowers RM, Kyrpides NC, Stepanauskas R et al (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35:725–731CrossRefGoogle Scholar
  6. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA 3rd, Stevens R, Vonstein V, Wattam AR, Xia F (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365CrossRefGoogle Scholar
  7. Brown CT, Olm MR, Thomas BC, Banfield JF (2016) Measurement of bacterial replication rates in microbial communities. Nat Biotechnol 34:1256–1263CrossRefGoogle Scholar
  8. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO (2015) Anvi’o: an advanced analysis and visualization platform for ‘omics data. Peer J 3:e1319CrossRefGoogle Scholar
  9. Farag IF, Davis JP, Youssef NH, Elshahed MS (2014) Global patterns of abundance, diversity and community structure of the Aminicenantes (candidate phylum OP8). PLoS One 9:e92139CrossRefGoogle Scholar
  10. Federhen S (2012) The NCBI taxonomy database. Nucleic Acids Res 40:D136–D143CrossRefGoogle Scholar
  11. Frischkorn KR, Stojanovski A, Paranjpye R (2013) Vibrio parahaemolyticus type IV pili mediate interactions with diatom-derived chitin and point to an unexplored mechanism of environmental persistence. Environ Microbiol 15:1416–1427CrossRefGoogle Scholar
  12. Gies EA, Konwar KM, Beatty JT, Hallam SJ (2014) Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl Environ Microbiol 80:6807–6818CrossRefGoogle Scholar
  13. Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, Cook GM, Morales SE (2016) Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J 10:761–777CrossRefGoogle Scholar
  14. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefGoogle Scholar
  15. Hernsdorf AW, Amano Y, Miyakawa K, Ise K, Suzuki Y, Anantharaman K, Probst A, Burstein D, Thomas BC, Banfield JF (2017) Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME J 11:1915–1929CrossRefGoogle Scholar
  16. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376Google Scholar
  17. Hunt DE, Gevers D, Vahora NM, Polz MF (2008) Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol 74:44–51CrossRefGoogle Scholar
  18. Hutcheson SW, Zhang H, Suvorov M (2011) Carbohydrase systems of Saccharophagus degradans degrading marine complex polysaccharides. Mar Drugs 9:645–665CrossRefGoogle Scholar
  19. Kadnikov VV, Mardanov AV, Beletsky AV, Banks D, Pimenov NV, Frank YA, Karnachuk OV, Ravin NV (2018) A metagenomic window into the 2-km-deep terrestrial subsurface aquifer revealed multiple pathways of organic matter decomposition. FEMS Microbiol Ecol 94(10):fiy152. CrossRefGoogle Scholar
  20. Kim YJ, Lee HS, Kim ES, Bae SS, Lim JK, Matsumi R, Lebedinsky AV, Sokolova TG, Kozhevnikova DA, Cha SS, Kim SJ, Kwon KK, Imanaka T, Atomi H, Bonch-Osmolovskaya EA, Lee JH, Kang SG (2010) Formate-driven growth coupled with H2 production. Nature 467:352–355CrossRefGoogle Scholar
  21. Konstantinidis KT, Rosselló-Móra R, Amann R (2017) Uncultivated microbes in need of their own taxonomy. ISME J 11:2399–2406CrossRefGoogle Scholar
  22. Magnabosco C, Ryan K, Lau MC, Kuloyo O, Lollar BS, Kieft TL, van Heerden E, Onstott TC (2016) A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. ISME J 10:730–741CrossRefGoogle Scholar
  23. Mandlik A, Swierczynski A, Das A, Ton-That H (2008) Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16:33–40CrossRefGoogle Scholar
  24. Mardanov AV, Ravin NV, Svetlitchnyi VA, Beletsky AV, Miroshnichenko ML, Bonch-Osmolovskaya EA, Skryabin KG (2009) Metabolic versatility and indigenous origin of the archaeon Thermococcus sibiricus, isolated from a siberian oil reservoir, as revealed by genome analysis. Appl Environ Microbiol 75:4580–4588CrossRefGoogle Scholar
  25. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J 17:10–12CrossRefGoogle Scholar
  26. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 4:60CrossRefGoogle Scholar
  27. Nobu MK, Dodsworth JA, Murugapiran SK, Rinke C, Gies EA, Webster G, Schwientek P, Kille P, Parkes RJ, Sass H, Jørgensen BB, Weightman AJ, Liu WT, Hallam SJ, Tsiamis G, Woyke T, Hedlund BP (2016) Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics. ISME J 10:273–286CrossRefGoogle Scholar
  28. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055CrossRefGoogle Scholar
  29. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36:996–1004Google Scholar
  30. Probst AJ, Castelle CJ, Singh A, Brown CT, Anantharaman K, Sharon I, Hug LA, Burstein D, Emerson JB, Thomas BC, Banfield JF (2016) Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations. Environ Microbiol 19:459–474CrossRefGoogle Scholar
  31. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596 (Database issue) CrossRefGoogle Scholar
  32. Rinke C, Schwientek P, Sczyrba A et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437CrossRefGoogle Scholar
  33. Robbins SJ, Evans PN, Parks DH, Golding SD, Tyson GW (2016) Genome-centric analysis of microbial populations enriched by hydraulic fracture fluid additives in a coal bed methane production well. Front Microbiol 7:731CrossRefGoogle Scholar
  34. Rodriguez-R LM, Konstantinidis KT (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr 4:e1900v1. Google Scholar
  35. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefGoogle Scholar
  36. Scigelova M, Crout DHG (1999) Microbial beta-N-acetylhexosaminidases and their biotechnological applications. Enzyme Microb Technol 25:3–14CrossRefGoogle Scholar
  37. Sharon I, Kertesz M, Hug LA, Pushkarev D, Blauwkamp TA, Castelle CJ, Amirebrahimi M, Thomas BC, Burstein D, Tringe SG, Williams KH, Banfield JF (2015) Accurate, multi-kb reads resolve complex populations and detect rare microorganisms. Genome Res 25:534–543CrossRefGoogle Scholar
  38. Sorokin DY, Gumerov VM, Rakitin AL, Beletsky AV, Sinninghe Damsté JS, Mardanov AV, Ravin NV (2014) Genome analysis of Chitinivibrio alkaliphilus gen. nov., sp. nov., a novel extremely haloalkaliphilic anaerobic chitinolytic bacterium from the candidate phylum Termite Group 3. Environ Microbiol 16:1549–1565CrossRefGoogle Scholar
  39. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefGoogle Scholar
  40. Wilson K (2001) Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol. (chapter 2: unit 2.4) Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Vitaly V. Kadnikov
    • 1
  • Andrey V. Mardanov
    • 1
  • Alexey V. Beletsky
    • 1
  • Olga V. Karnachuk
    • 2
  • Nikolai V. Ravin
    • 1
    Email author
  1. 1.Institute of BioengineeringResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
  2. 2.Laboratory of Biochemistry and Molecular BiologyTomsk State UniversityTomskRussia

Personalised recommendations