Advertisement

Four-year clinical prospective follow-up of resin composite restoration after selective caries removal using Er:YAG laser

  • Rodrigo Alexandre Valério
  • Rodrigo Galo
  • Daniel Galafassi
  • Silmara Aparecida Milori Corona
  • Maria Cristina BorsattoEmail author
Original Article
  • 7 Downloads

Abstract

Objectives

The aim of this study was to longitudinally evaluate, after a 4-year period, the clinical longevity of composite resin restoration compared to the baseline, after selective caries removal in permanent molars using Er:YAG laser or bur preparation with biomodification of dentin with the use of chlorhexidine.

Methods

Selective caries removal was performed on 80 teeth of 20 individuals who each had at least four active carious lesions. These lesions, located on occlusal surfaces of permanent molar counterparts, were removed using (i) Er:YAG laser biomodified with chlorhexidine, (ii) Er:YAG laser and application of deionized water, (iii) bur preparation biomodified with chlorhexidine, and (iv) bur preparation and application of deionized water. At the end of 4 years, 64 of the 80 restorations were evaluated in 16 individuals (n = 16). The restorations were evaluated, both clinically and photographically, using scanning electron microscopy (SEM) and pulp vitality analysis. The experimental data were statistically evaluated by kappa, Fisher’s, and chi-square tests, with a significance level of 5%. The Kaplan–Meier test and the Cox regression analysis were used to evaluate the survival of the restorations.

Results

After 4 years of follow-up, there was a statistically significant difference in marginal discoloration criteria for all of the groups evaluated. For marginal adaptation criteria, there was a statistically significant difference for the Er:YAG laser group biomodified with chlorhexine (p = 0.050). For clinical and radiographic evaluation of pulp vitality, there were no statistically significant differences among the groups (p = 0.806).

Conclusion

Er:YAG laser can be used for selective caries removal, regardless of dentin biomodification with chlorhexidine or application of deionized water, once it produced promising results in composite resin restorations after 4 years of follow-up, according to the criteria evaluated. The selective caries removal using Er:YAG laser or bur and the biomodification of dentin with the use of chlorhexidine did not influence the survival of composite resin restorations after the 4-year follow-up period.

Clinical relevance

Composite resin restorations applied after selective caries removal using Er:YAG laser or burs, regardless of dentin biomodification with the use of chlorhexidine or application of deionized water, showed adequate clinical behavior after 4 years of follow-up.

Keywords

Lasers Clinical trial Permanent restorative dentistry Composite resins Dental marginal adaptation 

Notes

Acknowledgments

The author thanks the Ribeirão Preto, School of Dentistry / University of São Paulo (FORP/USP), for giving all the necessary support for accomplishing this research and the São Paulo Research Foundation (FAPESP) for its financial support (2012/06910-6).

Funding information

São Paulo Research Foundation (FAPESP) process number (2012/06910-6).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This study was approved by the Research Ethics Committee of the Ribeirao Preto School of Dentistry, University of São Paulo (FORP/USP—Case No. 2016.1.586.58.4). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Lula EC, Monteiro-Neto V, Alves CM, Ribeiro CC (2009) Microbiological analysis after complete or partial removal of carious dentin in primary teeth: a randomized clinical trial. Caries Res 43:354–358.  https://doi.org/10.1159/000231572 CrossRefPubMedGoogle Scholar
  2. 2.
    Elhennawy K, Finke C, Paris S, Reda S, Jost-Brinkmann PG, Schwendicke F (2018) Selective vs stepwise removal of deep carious lesions in primary molars: 12-months results of a randomized controlled pilot trial. J Dent 77:72–77.  https://doi.org/10.1016/j.jdent.2018.07.011 CrossRefPubMedGoogle Scholar
  3. 3.
    Pinto S, de Araújo FB, Franzon R, Figueiredo MC, Henz S, García-Godoy F, Maltz M (2006) Clinical and microbiological effect of calcium hydroxide protection in indirect pulp capping in primary teeth. Am J Dent 19:382–386PubMedGoogle Scholar
  4. 4.
    Valério RA, Borsatto MC, Serra MC, Polizeli SA, Nemezio MA, Galo R, Aires CP, Dos Santos AC, Corona SA (2016) Caries removal in deciduous teeth using an Er:YAG laser: a randomized split-mouth clinical trial. Clin Oral Investig 20:65–73.  https://doi.org/10.1007/s00784-015-1470-z CrossRefPubMedGoogle Scholar
  5. 5.
    Galafassi D, Scatena C, Galo R, Curylofo-Zotti FA, Corona SAM, Borsatto MC (2017) Clinical evaluation of composite restorations in Er:YAG laser-prepared cavities re-wetting with chlorhexidine. Clin Oral Investig 21:1231–1241.  https://doi.org/10.1007/s00784-016-1897-x CrossRefPubMedGoogle Scholar
  6. 6.
    Mertz-Fairhurst EJ, Curtis JW Jr, Ergle JW, Rueggeberg FA, Adair SM (1998) Ultraconservative and cariostatic sealed restorations: results at year 10. J Am Dent Assoc 129:55–66CrossRefGoogle Scholar
  7. 7.
    Bjørndal L, Reit C, Bruun G, Markvart M, Kjaeldgaard M, Näsman P, Thordrup M, Dige I, Nyvad B, Fransson H, Lager A, Ericson D, Petersson K, Olsson J, Santimano EM, Wennström A, Winkel P, Gluud C (2010) Treatment of deep caries lesions in adults: randomized clinical trials comparing stepwise vs. direct complete excavation, and direct pulp capping vs. partial pulpotomy. Eur J Oral Sci 118:290–297.  https://doi.org/10.1111/j.1600-0722.2010.00731.x CrossRefPubMedGoogle Scholar
  8. 8.
    Banerjee A (2013) Minimal intervention dentistry: part 7. Minimally invasive operative caries management: rationale and techniques. Br Dent J 214:107–111.  https://doi.org/10.1038/sj.bdj.2013.106 CrossRefPubMedGoogle Scholar
  9. 9.
    Schwendicke F, Frencken JE, Bjørndal L, Maltz M, Manton DJ, Ricketts D, Van Landuyt K, Banerjee A, Campus G, Doméjean S, Fontana M, Leal S, Lo E, Machiulskiene V, Schulte A, Splieth C, Zandona AF, Innes NP (2016) Managing carious lesions: consensus recommendations on carious tissue removal. Adv Dent Res 28:58–67.  https://doi.org/10.1177/0022034516639271 CrossRefPubMedGoogle Scholar
  10. 10.
    Thompson V, Craig RG, Curro FA, Green WS, Ship JA (2008) Treatment of deep carious lesions by complete excavation or partial removal: a critical review. J Am Dent Assoc 139:705–712CrossRefGoogle Scholar
  11. 11.
    Aoki A, Ishikawa I, Yamada T, Otsuki M, Watanabe H, Tagami J, Ando Y, Yamamoto H (1998) Comparison between Er:YAG laser and conventional technique for root caries treatment in vitro. J Dent Res 77:1404–1414CrossRefGoogle Scholar
  12. 12.
    Tao S, Li L, Yuan H, Tao S, Cheng Y, He L, Li J (2017) Erbium laser technology vs traditional drilling for caries removal: a systematic review with meta-analysis. J Evid Based Dent Pract 17:324–334.  https://doi.org/10.1016/j.jebdp.2017.05.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Hibst R, Keller U (1989) Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate. Lasers Surg Med 9:338–344CrossRefGoogle Scholar
  14. 14.
    Martinez-Insua A, Da Silva DL, Rivera FG, Santana-Penin UA (2000) Differences in bonding to acid-etched or Er: YAG-laser-treated enamel and dentin surfaces. J Prosthet Dent 84:280–288CrossRefGoogle Scholar
  15. 15.
    Ceballo L, Osorio R, Toledano M, Tay F, Marshall GW (2002) Bonding to Er:YAG laser treated dentin. J Dent Res 81:119–122CrossRefGoogle Scholar
  16. 16.
    Aranha AC, De Paula EC, Gutknecht N, Marques MM, Ramalho KM, Apel C (2007) Analysis of the interfacial micromorphology of adhesive systems in cavities prepared with Er,Cr:YSGG, Er:YAG laser and bur. Microsc Res Tech 70:745–751CrossRefGoogle Scholar
  17. 17.
    Schein MT, Bocangel JS, Nogueira GEC, Schein PAL (2003) SEM evaluation of interaction pattern dentin and resin after cavity preparation using Er:YAG laser. J Dent 31:127–135CrossRefGoogle Scholar
  18. 18.
    Apel C, Birker L, Meister J, Weiss C, Gutknecht N (2004) The caries-preventive potential of subablative Er:YAG and Er:YSGG laser radiation in an intraoral model: a pilot study. Photomed Laser Surg 22:312–317CrossRefGoogle Scholar
  19. 19.
    Wen X, Liu L, Nie X, Zhang L, Deng M, Chen Y (2010) Effect of pulse Nd:YAG laser on bond strength and microleakage of resin to human dentine. Photomed Laser Surg 28:741–746.  https://doi.org/10.1089/pho.2009.2579 CrossRefPubMedGoogle Scholar
  20. 20.
    Matsumoto K, Nakamura Y, Makesi K, Kimura Y (1996) Clinical dental application of Er:YAG laser for class V cavity preparation. J Clin Laser Med Surg 14:123–127CrossRefGoogle Scholar
  21. 21.
    Malekafzali B, Asnaashari M, Javadi F (2017) Comparison of marginal microleakage of flowable composite restorations in primary canine teeth prepared with high-speed diamond bur, Er:YAG laser and Er,Cr:YSGG laser. Laser Ther 26:195–202.  https://doi.org/10.5978/islsm.17-OR-15 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hebling J, Pashley DH, Tjäderhane L, Tay FR (2005) Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res 84:741–746CrossRefGoogle Scholar
  23. 23.
    Ramezanian Nik I, Baradaran Naseri E, Majidinia S, Ramezanian Nik S, Jafari Giv M (2017) Effect of chlorhexidine and ethanol on microleakage of composite resin restoration to dentine. Chin J Dent Res 20:161–168.  https://doi.org/10.3290/j.cjdr.a38771 CrossRefPubMedGoogle Scholar
  24. 24.
    Gendron R, Grenier D, Sorsa T, Mayrand D (1999) Inhibition of the activities of matrix metalloproteinases 2, 8, and 9 by chlorhexidine. Clin Diagn Lab Immunol 6:437–439PubMedPubMedCentralGoogle Scholar
  25. 25.
    Pashley DH, Tay FR, Yiu C, Hashimoto M, Breschi L, Carvalho RM, Ito S (2004) Collagen degradation by host-derived enzymes during aging. J Dent Res 83:216–221CrossRefGoogle Scholar
  26. 26.
    Favetti M, Schroeder T, Montagner AF, Correa MB, Pereira-Cenci T, Cenci MS (2017) Effectiveness of pre-treatment with chlorhexidine in restoration retention: a 36-month follow-up randomized clinical trial. J Dent 60:44–49.  https://doi.org/10.1016/j.jdent.2017.02.014 CrossRefPubMedGoogle Scholar
  27. 27.
    Geraldo-Martins VR, Robles FR, Matos AB (2007) Chlorhexidine’s effect on sealing ability of composite restorations following Er:YAG laser cavity preparation. J Contemp Dent Pract 18:26–33CrossRefGoogle Scholar
  28. 28.
    Schulz KF, Altman DG, Moher D (2010) CONSORT Group—statement: updated guidelines for reporting parallel group randomised trials. Ann Intern Med 152:726–732CrossRefGoogle Scholar
  29. 29.
    Krause F, Braun A, Lotz G, Kneist S, Jepsen S, Eberhard J (2008) Evaluation of selective caries removal in deciduous teeth by a fluorescence feedback-controlled Er:YAG laser in vivo. Clin Oral Investig 12:209–215.  https://doi.org/10.1007/s00784-007-0169-1 CrossRefPubMedGoogle Scholar
  30. 30.
    Colucci V, do Amaral FL, Pécora JD, Palma-Dibb RG, Corona SA (2009) Water flow on erbium:yttrium-aluminum-garnet laser irradiation: effects on dental tissues. Lasers Med Sci 24:811–818.  https://doi.org/10.1007/s10103-008-0563-1 CrossRefPubMedGoogle Scholar
  31. 31.
    Kidd EA (2004) How ‘clean’ must a cavity be before restoration? Caries Res 38:305–313CrossRefGoogle Scholar
  32. 32.
    Clark J, Symons AL, Diklic S, Walsh LJ (2001) Effectiveness of diagnosing residual caries with various methods during cavity preparation using conventional methods, chemo-mechanical caries removal, and Er: YAG laser. Aust Dent J 46:S20Google Scholar
  33. 33.
    Massara MI, Alves JB, Brandao PR (2002) Atraumatic restorative treatment: clinical, ultrastructural and chemical analysis. Caries Res 36:430–436CrossRefGoogle Scholar
  34. 34.
    Maltz M, Oliveira EF, Fontanella V, Carminatti G (2007) Deep caries lesions after incomplete dentine caries removal: 40-month follow-up study. Caries Res 41:493–496CrossRefGoogle Scholar
  35. 35.
    Cvar JF, Ryge G (2005) Reprint of criteria for the clinical evaluation of dental restorative materials. Clin Oral Investig 9:215–232CrossRefGoogle Scholar
  36. 36.
    Jones VR, Rivera EM, Walton RE (2002) Comparison of carbon dioxide versus refrigerant spray to determine pulpal responsiveness. J Endod 28:531–533CrossRefGoogle Scholar
  37. 37.
    Petersson K, Söderström C, Kiani-Anaraki M, Lévy G (1999) Evaluation of the ability of thermal and electrical tests to register pulp vitality. Endod Dent Traumatol 15:127–131CrossRefGoogle Scholar
  38. 38.
    Tarcin B, Gumru B, Iriboz E, Turkaydin DE, Ovecoglu HS (2015) Radiologic assessment of periapical health: comparison of 3 different index systems. J Endod 41:1834–1838.  https://doi.org/10.1016/j.joen.2015.08.010 CrossRefPubMedGoogle Scholar
  39. 39.
    Garcia-Godoy F, Krämer N, Feilzer AJ, Frankenberger R (2010) Long-term degradation of enamel and dentin bonds: 6-year results in vitro vs. in vivo. Dent Mater 26:1113–1118.  https://doi.org/10.1016/j.dental.2010.07.012 CrossRefPubMedGoogle Scholar
  40. 40.
    Keller U, Hibst R (1997) Effects of Er:YAG laser in caries treatment: a clinical pilot study. Lasers Surg Med 20:32–38CrossRefGoogle Scholar
  41. 41.
    Bohari MR, Chunawalla YK, Ahmed BM (2012) Clinical evaluation of caries removal in primary teeth using conventional, chemomechanical and laser technique: an in vivo study. J Contemp Dent Pract 13:40–47CrossRefGoogle Scholar
  42. 42.
    Kurokawa H, Takamizawa T, Rikuta A, Tsubota K, Miyazaki M (2015) Three-year clinical evaluation of posterior composite restorations placed with a single-step self-etch adhesive. J Oral Sci 57:101–108.  https://doi.org/10.2334/josnusd.57.101 CrossRefPubMedGoogle Scholar
  43. 43.
    Yazici R, Baseren M, Gorucu J (2010) Clinical comparison of bur- and laser-prepared minimally invasive occlusal resin composite restorations: two-year follow-up. Oper Dent 35:500–507.  https://doi.org/10.2341/09-339-C CrossRefPubMedGoogle Scholar
  44. 44.
    Hamidi MM, Ercan E, Dülgergil ÇT, Çolak H (2015) Evaluation of the clinical success of class I cavities prepared by an Er:YAG laser-5-year follow-up study. Lasers Med Sci 30:1895–1901.  https://doi.org/10.1007/s10103-015-1751-4 CrossRefPubMedGoogle Scholar
  45. 45.
    Yazici AR, Ustunkol I, Ozgunaltay G, Dayangac B (2014) Three-year clinical evaluation of different restorative resins in class I restorations. Oper Dent 39:248–255.  https://doi.org/10.2341/13-221-C CrossRefPubMedGoogle Scholar
  46. 46.
    de Andrade AK, Duarte RM, Medeiros e Silva FD, Batista AU, Lima KC, Monteiro GQ, Montes MA (2014) Resin composite class I restorations: a 54-month randomized clinical trial. Oper Dent 39:588–594.  https://doi.org/10.2341/14-067-C CrossRefPubMedGoogle Scholar
  47. 47.
    Sarmadi R, Andersson EV, Lingström P, Gabre P (2018) A randomized controlled trial comparing Er:YAG laser and rotary bur in the excavation of caries—patients’ experiences and the quality of composite restoration. Open Dent J 12:443–454.  https://doi.org/10.2174/1874210601812010443 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chinelatti MA, Rocha CT, Colucci V, Serra MC, Rodrigues-Júnior AL, Corona SA (2017) Effect of Er:YAG laser on dentin demineralization around restorations. Lasers Med Sci 32:413–418.  https://doi.org/10.1007/s10103-016-2136-z CrossRefPubMedGoogle Scholar
  49. 49.
    Moosavi H, Ghorbanzadeh S, Ahrari F (2016) Structural and morphological changes in human dentin after ablative and subablative Er:YAG laser irradiation. J Lasers Med Sci 7:86–91.  https://doi.org/10.15171/jlms.2016.15 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Curylofo-Zotti FA, Tanta GS, Zucoloto ML, Souza-Gabriel AE, Corona SAM (2017) Selective removal of carious lesion with Er:YAG laser followed by dentin biomodification with chitosan. Lasers Med Sci 32:1595–1603.  https://doi.org/10.1007/s10103-017-2287-6 CrossRefPubMedGoogle Scholar
  51. 51.
    Koyuturk AE, Ozmen B, Cortcu M, Tokay U, Tosun G, Erhan SM (2014) Effects of Er:YAG laser on bond strength of self-etching adhesives to caries-affected dentin. Microsc Res Tech 77:282–288.  https://doi.org/10.1002/jemt.22340 CrossRefPubMedGoogle Scholar
  52. 52.
    Yamada Y, Hossain M, Nakamura Y, Murakami Y, Matsumoto K (2002) Microleakage of composite resin restoration in cavities prepared by Er:YAG laser irradiation in primary teeth. Eur J Paediatr Dent 3:39–45PubMedGoogle Scholar
  53. 53.
    Van Meerbeek B, De Munck J, Mattar D, Van Landuyt K, Lambrechts P (2003) Microtensile bond strengths of an etch & rinse and self-etch adhesive to enamel and dentin as a function of surface treatment. Oper Dent 28:647–660PubMedGoogle Scholar
  54. 54.
    Schwass DR, Leichter JW, Purton DG, Swain MV (2013) Evaluating the efficiency of caries removal using an Er:YAG laser driven by fluorescence feedback control. Arch Oral Biol 58:603–610.  https://doi.org/10.1016/j.archoralbio.2012.09.017 CrossRefPubMedGoogle Scholar
  55. 55.
    Kita T, Ishii K, Yoshikawa K, Yasuo K, Yamamoto K, Awazu K (2015) In vitro study on selective removal of bovine demineralized dentin using nanosecond pulsed laser at wavelengths around 5.8 μm for realizing less invasive treatment of dental caries. Lasers Med Sci 30:961–967.  https://doi.org/10.1007/s10103-013-1517-9 CrossRefPubMedGoogle Scholar
  56. 56.
    Oelgiesser D, Blasbalg J, Ben-Amar A (2003) Cavity preparation by Er-YAG laser on pulpal temperature rise. Am J Dent 16:96–98PubMedGoogle Scholar
  57. 57.
    Baraba A, Kqiku L, Gabrić D, Verzak Ž, Hanscho K, Miletić I (2018) Efficacy of removal of cariogenic bacteria and carious dentin by ablation using different modes of Er:YAG lasers. Braz J Med Biol Res 51:e6872.  https://doi.org/10.1590/1414-431X20176872 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644CrossRefGoogle Scholar
  59. 59.
    Zhegova GG, Rashkova MR, Yordanov BI (2014) Perception of pain of Er_YAG dental caries treatment in adolescents—a clinical evaluation. J IMAB 20:500–503CrossRefGoogle Scholar
  60. 60.
    Mello B, C Stafuzza T, Vitor L, Rios D, Silva T, Machado M, M Oliveira T (2018) Evaluation of dentin-pulp complex response after conservative clinical procedures in primary teeth. Int J Clin Pediatr Dent 11:188–192.  https://doi.org/10.5005/jp-journals-10005-1509 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Stafuzza TC, Vitor LLR, Rios D, Cruvinel Silva T, Machado MAAM, Oliveira TM (2018) Clinical and radiographic success of selective caries removal to firm dentin in primary teeth: 18-month follow-up. Case Rep Dent 26:9213681.  https://doi.org/10.1155/2018/9213681 CrossRefGoogle Scholar
  62. 62.
    Chaussain-Miller C, Fioretti F, Goldberg M, Menashi S (2006) The role of matrix metalloproteinases (MMPs) in human caries. J Dent Res 85:22–32CrossRefGoogle Scholar
  63. 63.
    Feitosa SA, Palasuk J, Geraldeli S, Windsor LJ, Bottino MC (2018) Physicochemical and biological properties of novel chlorhexidine-loaded nanotube-modifieddentin adhesive. J Biomed Mater Res B Appl Biomater doi:  https://doi.org/10.1002/jbm.b.34183 CrossRefGoogle Scholar
  64. 64.
    Carrilho MR, Carvalho RM, Sousa EN, Nicolau J, Breschi L, Mazzoni A, Tjaderhane L, Tay FR, Agee K, Pashley DH (2010) Substantivity of chlorhexidine to human dentin. Dent Mater 26:779–785.  https://doi.org/10.1016/j.dental.2010.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    De Munck J, Van den Steen PE, Mine A, Van Landuyt KL, Poitevin A, Opdenakker G et al (2009) Inhibition of enzymatic degradation of adhesive-dentin interfaces. J Dent Res 88:1101–1106CrossRefGoogle Scholar
  66. 66.
    Perote LC, Kamozaki MB, Gutierrez NC, Tay FR, Pucci CR (2015) Effect of matrix metalloproteinase-inhibiting solutions and aging methods on dentin bond strength. J Adhes Dent 17:347–352.  https://doi.org/10.3290/j.jad.a34594 CrossRefPubMedGoogle Scholar
  67. 67.
    Stanislawczuk R, Amaral RC, Zander-Grande C, Gagler D, Reis A, Loguercio AD (2009) Chlorhexidine-containing acid conditioner preserves the longevity of resin-dentin bonds. Oper Dent 34:481–490.  https://doi.org/10.2341/08-016-L CrossRefPubMedGoogle Scholar
  68. 68.
    Montagner AF, Perroni AP, Corrêa MB, Masotti AS, Pereira-Cenci T, Cenci MS (2015) Effect of pre-treatment with chlorhexidine on the retention of restorations: a randomized controlled trial. Braz Dent J 26:234–241.  https://doi.org/10.1590/0103-6440201300009 CrossRefPubMedGoogle Scholar
  69. 69.
    Ricci HA, Scheffel DL, de Souza Costa CA, dos Santos FJ, Jafelicci M Jr, Hebling J (2014) Wettability of chlorhexidine treated non-carious and caries-affected dentine. Aust Dent J 59:37–42.  https://doi.org/10.1111/adj.12150 CrossRefPubMedGoogle Scholar
  70. 70.
    Ricci HA, Sanabe ME, de Souza Costa CA, Pashley DH, Hebling J (2010) Chlorhexidine increases the longevity of in vivo resin-dentin bonds. Eur J Oral Sci 118:411–416.  https://doi.org/10.1111/j.1600-0722.2010.00754.x CrossRefPubMedGoogle Scholar
  71. 71.
    Malaquias P, Gutierrez MF, Hass V, Stanislawczuk R, Bandeca MC, Arrais C, Farago PV, Reis A, Loguercio AD (2018) Two-year effects of chlorhexidine-containing adhesives on the in vitro durability of resin-dentin interfaces and modeling of drug release. Oper Dent 43:201–212.  https://doi.org/10.2341/16-333-L CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Clinical Pediatric Dentistry DepartmentRibeirão Preto School of Dentistry / São Paulo UniversityRibeirão PretoBrazil
  2. 2.Department of DentistryUniversidade Federal do Vale do Jequitinhonha e Mucuri (UFVJM)DiamantinaBrazil
  3. 3.Department of Restorative Dentistry, School of DentistryMeridional College-IMEDPasso FundoBrazil
  4. 4.Restorative Dentistry DepartmentRibeirão Preto School of Dentistry / São Paulo UniversityRibeirão PretoBrazil
  5. 5.Clinical Pediatric Dentistry DepartmentRibeirão Preto School of Dentistry / São Paulo UniversityRibeirão PretoBrazil

Personalised recommendations