Improving bonding to eroded dentin by using collagen cross-linking agents: 2 years of water storage

  • Fabiana Suelen Figueredo de Siqueira
  • Bruna Hilgemberg
  • Lucila Cristina Rodrigues Araujo
  • Viviane Hass
  • Matheus Coelho Bandeca
  • João Carlos Gomes
  • Alessandra Reis
  • Alessandro D LoguercioEmail author
  • Andres Felipe Millan Cardenas
Original Article



The aim of this study was to investigate the effects of collagen cross-linking agents on nanomechanical and bonding properties of eroded dentin (ED), 24 h and 2 years after water storage.

Materials and methods

Human molar dentin surfaces, eroded by soft drinks or citric acid, were acid-etched and treated with primers containing proanthocyanidin (PA) and riboflavin (RI) or were untreated (control) and tested after 24 h and 2 years. After acid etching and adhesive application (Prime&Bond Elect (PBE); Scotchbond Universal (SBU); Tetric n-bond Universal (TEU)), specimens were sectioned into beams and tested for microtensile bond strength (μTBS) and silver nitrate deposition (NL) after 24 h and 2 years. The beams were used to evaluate the 24-h in situ conversion of degree (DC). Nanohardness (NH) and Young’s modulus (YM) were evaluated via resin-bonded dentin slices after 24 h and 2 years. A three-way ANOVA and Tukey’s test were used for statistical analysis (5%).


For both storage times, ED with citric acid resulted in lower μTBS, NH, and YM and higher NL for each adhesive system than soft drink ED (p < 0.05). After 2 years of water storage, cross-linking primers maintained the μTBS, NH, and YM (p < 0.05) when compared with the control group. Althougth, the NL values decreased for all groups after 2 years of water storage, PA and RI treatments showed NI values lower than control group (p < 0.001). No significant differences were observed between PA and RI treatments (p > 0.05). Cross-linking primers maintain or improve DC (p < 0.03). In general, TEU and SBU yielded higher μTBS, DC, NH, and YM and lower NL than PBE.


Cross-linking agents improved the results and maintained the resin-ED interface bonding and nanomechanical properties, without jeopardizing adhesive polymerization.

Clinical relevance

Cross-linking agents are a viable alternative for improving and maintaining resin-ED interface bonding and nanomechanical properties.


Proanthocyanidins Tooth erosion Riboflavin Adhesive systems Microtensile bond strength Hardness tests 



This study was performed by Fabiana Siqueira as partial fulfillment of his PhD degree at the State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil. This study was partially supported by the National Council for Scientific and Technological Development (CNPq) under grants 303332/2017-4 and 304105/2013-9 and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Also, authors  are grateful for the support provided by Cental de Laboratórios Multiusuários/Universidade Estadual de Ponta Grossa (CLABMU/UEPG).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants are in accordance with the ethical standards of the State University of Ponta Grossa research committee. This study was approved by the State University of Ponta Grossa ethics committee.

Informed consent

Informed consent was not obtained because there were no human participants included in the study.


  1. 1.
    Lussi A, Schlueter N, Rakhmatullina E, Ganss C (2011) Dental erosion--an overview with emphasis on chemical and histopathological aspects. Caries Res 45(Suppl 1):2–12. CrossRefGoogle Scholar
  2. 2.
    Imfeld T (1996) Dental erosion. Definition, classification and links. Eur J Oral Sci 104:151–155CrossRefGoogle Scholar
  3. 3.
    Jaeggi T, Gruninger A, Lussi A (2006) Restorative therapy of erosion. Monogr Oral Sci 20:200–214. CrossRefGoogle Scholar
  4. 4.
    Murakami C, Oliveira LB, Sheiham A, Nahas Pires Correa MS, Haddad AE, Bonecker M (2011) Risk indicators for erosive tooth wear in Brazilian preschool children. Caries Res 45:121–129. CrossRefGoogle Scholar
  5. 5.
    Dugmore CR, Rock WP (2004) The prevalence of tooth erosion in 12-year-old children. Br Dent J 196:279–282; discussion 273. CrossRefGoogle Scholar
  6. 6.
    Meurman JH, Drysdale T, Frank RM (1991) Experimental erosion of dentin. Scand J Dent Res 99:457–462Google Scholar
  7. 7.
    Siqueira F, Cardenas A, Gomes GM, Chibinski AC, Gomes O, Bandeca MC, Loguercio AD, Gomes JC (2018) Three-year effects of deproteinization on the in vitro durability of resin/dentin-eroded interfaces. Oper Dent 43:60–70. CrossRefGoogle Scholar
  8. 8.
    Zimmerli B, De Munck J, Lussi A, Lambrechts P, Van Meerbeek B (2012) Long-term bonding to eroded dentin requires superficial bur preparation. Clin Oral Investig 16:1451–1461. CrossRefGoogle Scholar
  9. 9.
    Cruz JBLT, Tedesco TK, Guglielmi Cde A, Raggio DP (2012) Eroded dentin does not jeopardize the bond strength of adhesive restorative materials. Braz Oral Res 26:306–312CrossRefGoogle Scholar
  10. 10.
    Prati C, Montebugnoli L, Suppa P, Valdre G, Mongiorgi R (2003) Permeability and morphology of dentin after erosion induced by acidic drinks. J Periodontol 74:428–436. CrossRefGoogle Scholar
  11. 11.
    Tjaderhane L, Buzalaf MA, Carrilho M, Chaussain C (2015) Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of 'dentin degradomics'. Caries Res 49:193–208. CrossRefGoogle Scholar
  12. 12.
    Ganss C, Klimek J, Schaffer U, Spall T (2001) Effectiveness of two fluoridation measures on erosion progression in human enamel and dentine in vitro. Caries Res 35:325–330CrossRefGoogle Scholar
  13. 13.
    Kleter GA, Damen JJ, Everts V, Niehof J, Ten Cate JM (1994) The influence of the organic matrix on demineralization of bovine root dentin in vitro. J Dent Res 73:1523–1529CrossRefGoogle Scholar
  14. 14.
    Liu Y, Tjaderhane L, Breschi L, Mazzoni A, Li N, Mao J, Pashley DH, Tay FR (2011) Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res 90:953–968. CrossRefGoogle Scholar
  15. 15.
    Pashley DH, Tay FR, Yiu C, Hashimoto M, Breschi L, Carvalho RM, Ito S (2004) Collagen degradation by host-derived enzymes during aging. J Dent Res 83:216–221CrossRefGoogle Scholar
  16. 16.
    Tjaderhane L, Larjava H, Sorsa T, Uitto VJ, Larmas M, Salo T (1998) The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J Dent Res 77:1622–1629. CrossRefGoogle Scholar
  17. 17.
    Buzalaf MA, Kato MT, Hannas AR (2012) The role of matrix metalloproteinases in dental erosion. Adv Dent Res 24:72–76. CrossRefGoogle Scholar
  18. 18.
    Kato MT, Leite AL, Hannas AR, Calabria MP, Magalhaes AC, Pereira JC, Buzalaf MA (2012) Impact of protease inhibitors on dentin matrix degradation by collagenase. J Dent Res 91:1119–1123. CrossRefGoogle Scholar
  19. 19.
    Francisconi-dos-Rios LF, Casas-Apayco LC, Calabria MP, Francisconi PA, Borges AF, Wang L (2015) Role of chlorhexidine in bond strength to artificially eroded dentin over time. J Adhes Dent 17:133–139. Google Scholar
  20. 20.
    Machado CM, Zamuner AC, Modena KCS, Ishikiriama SK, Wang L (2015) How erosive drinks and enzyme inhibitors impact bond strength to dentin. Braz Oral Res 29:1–7CrossRefGoogle Scholar
  21. 21.
    Francisconi-dos-Rios LF, Calabria MP, Casas-Apayco LC, Honorio HM, Carrilho MR, Pereira JC, Wang L (2015) Chlorhexidine does not improve but preserves bond strength to eroded dentin. Am J Dent 28:28–32Google Scholar
  22. 22.
    Bedran-Russo AK, Pashley DH, Agee K, Drummond JL, Miescke KJ (2008) Changes in stiffness of demineralized dentin following application of collagen crosslinkers. J Biomed Mater Res B Appl Biomater 86:330–334. CrossRefGoogle Scholar
  23. 23.
    Bedran-Russo AK, Pereira PN, Duarte WR, Drummond JL, Yamauchi M (2007) Application of crosslinkers to dentin collagen enhances the ultimate tensile strength. J Biomed Mater Res B Appl Biomater 80:268–272. CrossRefGoogle Scholar
  24. 24.
    Hass V, de Paula AM, Parreiras S, Gutierrez MF, Luque-Martinez I, de Paris Matos T, Bandeca MC, Loguercio AD, Yao X, Wang Y, Reis A (2016) Degradation of dentin-bonded interfaces treated with collagen cross-linking agents in a cariogenic oral environment: an in situ study. J Dent 49:60–67. CrossRefGoogle Scholar
  25. 25.
    Hass V, Luque-Martinez IV, Gutierrez MF, Moreira CG, Gotti VB, Feitosa VP, Koller G, Otuki MF, Loguercio AD, Reis A (2016) Collagen cross-linkers on dentin bonding: stability of the adhesive interfaces, degree of conversion of the adhesive, cytotoxicity and in situ MMP inhibition. Dent Mater 32:732–741. CrossRefGoogle Scholar
  26. 26.
    Bedran-Russo AK, Castellan CS, Shinohara MS, Hassan L, Antunes A (2011) Characterization of biomodified dentin matrices for potential preventive and reparative therapies. Acta Biomater 7:1735–1741. CrossRefGoogle Scholar
  27. 27.
    Butler WT (1995) Dentin matrix proteins and dentinogenesis. Connect Tissue Res 33:59–65CrossRefGoogle Scholar
  28. 28.
    Cheng P, Li D, Boruvka L, Rotenberg Y, Neumann AW (1990) Automation of axisymmetric drop shape analysis for measurements of interfacial tensions and contact angles. Colloids Surf 43:151–167CrossRefGoogle Scholar
  29. 29.
    Bedran-Russo AK, Vidal CM, Dos Santos PH, Castellan CS (2010) Long-term effect of carbodiimide on dentin matrix and resin-dentin bonds. J Biomed Mater Res B Appl Biomater 94:250–255. Google Scholar
  30. 30.
    Cova A, Breschi L, Nato F, Ruggeri AJ, Carrilho M, Tjaderhane L, Prati C, Di Lenarda R, Tay FR, Pashley DH, Mazzoni A (2011) Effect of UVA-activated riboflavin on dentin bonding. J Dent Res 90:1439–1445. CrossRefGoogle Scholar
  31. 31.
    Cruz JB, Bonini G, Lenzi TL, Imparato JC, Raggio DP (2015) Bonding stability of adhesive systems to eroded dentin. Braz Oral Res 29:1–6. CrossRefGoogle Scholar
  32. 32.
    Forgerini TV, Ribeiro JF, Rocha RO, Soares FZ, Lenzi TL (2017) Role of etching mode on bonding longevity of a universal adhesive to eroded dentin. J Adhes Dent.
  33. 33.
    Shellis RP, Ganss C, Ren Y, Zero DT, Lussi A (2011) Methodology and models in erosion research: discussion and conclusions. Caries Res 45(Suppl 1):69–77. CrossRefGoogle Scholar
  34. 34.
    Zarella BL, Cardoso CA, Pela VT, Kato MT, Tjaderhane L, Buzalaf MA (2015) The role of matrix metalloproteinases and cysteine-cathepsins on the progression of dentine erosion. Arch Oral Biol 60:1340–1345. CrossRefGoogle Scholar
  35. 35.
    Magalhaes AC, Levy FM, Souza BM, Cardoso CA, Cassiano LP, Pessan JP, Buzalaf MA (2014) Inhibition of tooth erosion by milk containing different fluoride concentrations: an in vitro study. J Dent 42:498–502. CrossRefGoogle Scholar
  36. 36.
    Flury S, Koch T, Peutzfeldt A, Lussi A, Ganss C (2013) The effect of a tin-containing fluoride mouth rinse on the bond between resin composite and erosively demineralised dentin. Clin Oral Investig 17:217–225. CrossRefGoogle Scholar
  37. 37.
    Brennan-Pierce EP, MacAskill I, Price RB, Lee JM (2014) Riboflavin-sensitized photo-crosslinking of collagen using a dental curing light. Biomed Mater Eng 24:1659–1671. Google Scholar
  38. 38.
    Fawzy AS, Nitisusanta LI, Iqbal K, Daood U, Neo J (2012) Riboflavin as a dentin crosslinking agent: ultraviolet A versus blue light. Dent Mater 28:1284–1291. CrossRefGoogle Scholar
  39. 39.
    Perdigao J, Geraldeli S, Carmo AR, Dutra HR (2002) In vivo influence of residual moisture on microtensile bond strengths of one-bottle adhesives. J Esthet Restor Dent 14:31–38CrossRefGoogle Scholar
  40. 40.
    Reis A, Grande RH, Oliveira GM, Lopes GC, Loguercio AD (2007) A 2-year evaluation of moisture on microtensile bond strength and nanoleakage. Dent Mater 23:862–870. CrossRefGoogle Scholar
  41. 41.
    Reis A, Loguercio AD, Azevedo CL, de Carvalho RM, da Julio Singer M, Grande RH (2003) Moisture spectrum of demineralized dentin for adhesive systems with different solvent bases. J Adhes Dent 5:183–192Google Scholar
  42. 42.
    Tay FR, Pashley DH, Suh BI, Carvalho RM, Itthagarun A (2002) Single-step adhesives are permeable membranes. J Dent 30:371–382CrossRefGoogle Scholar
  43. 43.
    Hass V, Dobrovolski M, Zander-Grande C, Martins GC, Gordillo LA, Rodrigues Accorinte Mde L, Gomes OM, Loguercio AD, Reis A (2013) Correlation between degree of conversion, resin-dentin bond strength and nanoleakage of simplified etch-and-rinse adhesives. Dent Mater 29:921–928. CrossRefGoogle Scholar
  44. 44.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  45. 45.
    Urabe I, Nakajima S, Sano H, Tagami J (2000) Physical properties of the dentin-enamel junction region. Am J Dent 13:129–135Google Scholar
  46. 46.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583. CrossRefGoogle Scholar
  47. 47.
    Jensdottir T, Holbrook P, Nauntofte B, Buchwald C, Bardow A (2006) Immediate erosive potential of cola drinks and orange juices. J Dent Res 85:226–230. CrossRefGoogle Scholar
  48. 48.
    Pashley DH, Ciucchi B, Sano H, Horner JA (1993) Permeability of dentin to adhesive agents. Quintessence Int 24:618–631Google Scholar
  49. 49.
    Wang Y, Spencer P (2002) Analysis of acid-treated dentin smear debris and smear layers using confocal Raman microspectroscopy. J Biomed Mater Res 60:300–308CrossRefGoogle Scholar
  50. 50.
    Frassetto A, Breschi L, Turco G, Marchesi G, Di Lenarda R, Tay FR, Pashley DH, Cadenaro M (2016) Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability--a literature review. Dent Mater 32:e41–e53. CrossRefGoogle Scholar
  51. 51.
    Magalhaes AC, Wiegand A, Rios D, Hannas A, Attin T, Buzalaf MA (2009) Chlorhexidine and green tea extract reduce dentin erosion and abrasion in situ. J Dent 37:994–998. CrossRefGoogle Scholar
  52. 52.
    Daood U, Swee Heng C, Neo Chiew Lian J, Fawzy AS (2015) In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies. Int J Oral Sci 7:110–124. CrossRefGoogle Scholar
  53. 53.
    Leme-Kraus AA, Aydin B, Vidal CM, Phansalkar RM, Nam JW, McAlpine J, Pauli GF, Chen S, Bedran-Russo AK (2016) Biostability of the proanthocyanidins-dentin complex and adhesion studies. J Dent Res 96:406–412. CrossRefGoogle Scholar
  54. 54.
    Macedo GV, Yamauchi M, Bedran-Russo AK (2009) Effects of chemical cross-linkers on caries-affected dentin bonding. J Dent Res 88:1096–1100. CrossRefGoogle Scholar
  55. 55.
    Fawzy A, Nitisusanta L, Iqbal K, Daood U, Beng LT, Neo J (2012) Characterization of riboflavin-modified dentin collagen matrix. J Dent Res 91:1049–1054. CrossRefGoogle Scholar
  56. 56.
    Sionkowska A (2006) Flash photolysis and pulse radiolysis studies on collagen type I in acetic acid solution. J Photochem Photobiol B 84:38–45. CrossRefGoogle Scholar
  57. 57.
    Castellan CS, Pereira PN, Grande RH, Bedran-Russo AK (2010) Mechanical characterization of proanthocyanidin-dentin matrix interaction. Dent Mater 26:968–973. CrossRefGoogle Scholar
  58. 58.
    Han B, Jaurequi J, Tang BW, Nimni ME (2003) Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res A 65:118–124. CrossRefGoogle Scholar
  59. 59.
    Pierpoint WS (1969) o-Quinones formed in plant extracts. Their reactions with amino acids and peptides. Biochem J 112:609–616CrossRefGoogle Scholar
  60. 60.
    Loomis WD (1974) Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. Methods Enzymol 31:528–544CrossRefGoogle Scholar
  61. 61.
    Hagerman AE, Klucher KM (1986) Tannin-protein interactions. Prog Clin Biol Res 213:67–76Google Scholar
  62. 62.
    Castellan CS, Pereira PN, Viana G, Chen SN, Pauli GF, Bedran-Russo AK (2010) Solubility study of phytochemical cross-linking agents on dentin stiffness. J Dent 38:431–436. CrossRefGoogle Scholar
  63. 63.
    Deyhle H, Bunk O, Muller B (2011) Nanostructure of healthy and caries-affected human teeth. Nanomedicine 7:694–701. CrossRefGoogle Scholar
  64. 64.
    Mazzoni A, Pashley DH, Ruggeri A Jr, Vita F, Falconi M, Di Lenarda R, Breschi L (2008) Adhesion to chondroitinase ABC treated dentin. J Biomed Mater Res B Appl Biomater 86:228–236. CrossRefGoogle Scholar
  65. 65.
    Breschi L, Mazzoni A, Ruggeri A, Cadenaro M, Di Lenarda R, De Stefano Dorigo E (2008) Dental adhesion review: aging and stability of the bonded interface. Dent Mater 24:90–101. CrossRefGoogle Scholar
  66. 66.
    Pashley EL, Zhang Y, Lockwood PE, Rueggeberg FA, Pashley DH (1998) Effects of HEMA on water evaporation from water-HEMA mixtures. Dent Mater 14:6–10CrossRefGoogle Scholar
  67. 67.
    Moszner N, Salz U, Zimmermann J (2005) Chemical aspects of self-etching enamel-dentin adhesives: a systematic review. Dent Mater 21:895–910. CrossRefGoogle Scholar
  68. 68.
    Jacobsen TSK (1995) Some effects of water on dentin bonding. Dent Mater 11:132–136. CrossRefGoogle Scholar
  69. 69.
    Luque-Martinez IV, Perdigao J, Munoz MA, Sezinando A, Reis A, Loguercio AD (2014) Effects of solvent evaporation time on immediate adhesive properties of universal adhesives to dentin. Dent Mater 30:1126–1135. CrossRefGoogle Scholar
  70. 70.
    Miettinen VM, Vallittu PK, Docent DT (1997) Water sorption and solubility of glass fiber-reinforced denture polymethyl methacrylate resin. J Prosthet Dent 77:531–534CrossRefGoogle Scholar
  71. 71.
    Van Landuyt KL, De Munck J, Snauwaert J, Coutinho E, Poitevin A, Yoshida Y, Inoue S, Peumans M, Suzuki K, Lambrechts P, Van Meerbeek B (2005) Monomer-solvent phase separation in one-step self-etch adhesives. J Dent Res 84:183–188. CrossRefGoogle Scholar
  72. 72.
    Cho BH, Dickens SH (2004) Effects of the acetone content of single solution dentin bonding agents on the adhesive layer thickness and the microtensile bond strength. Dent Mater 20:107–115. CrossRefGoogle Scholar
  73. 73.
    Platt JA, Almeida J, Gonzalez-Cabezas C, Rhodes B, Moore BK (2001) The effect of double adhesive application on the shear bond strength to dentin of compomers using three one-bottle adhesive systems. Oper Dent 26:313–317Google Scholar
  74. 74.
    Roulet J-F, Van Meerbeek B (2007) Editorial: statistics: a nuisance, a tool, or a must? J Adhes Dent 9:287–288. Google Scholar
  75. 75.
    Van Meerbeek B, Peumans M, Poitevin A, Mine A, Van Ende A, Neves A, De Munck J (2010) Relationship between bond-strength tests and clinical outcomes. Dent Mater 26:e100–e121. CrossRefGoogle Scholar
  76. 76.
    Loguercio AD, Uceda-Gomez N, Carrilho MR, Reis A (2005) Influence of specimen size and regional variation on long-term resin-dentin bond strength. Dent Mater 21:224–231. CrossRefGoogle Scholar
  77. 77.
    Hass V, Folkuenig MS, Reis A, Loguercio AD (2011) Influence of adhesive properties on resin-dentin bond strength of one-step self-etching adhesives. J Adhes Dent 13:417–424. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fabiana Suelen Figueredo de Siqueira
    • 1
  • Bruna Hilgemberg
    • 2
  • Lucila Cristina Rodrigues Araujo
    • 1
  • Viviane Hass
    • 3
  • Matheus Coelho Bandeca
    • 1
  • João Carlos Gomes
    • 4
  • Alessandra Reis
    • 4
  • Alessandro D Loguercio
    • 4
    • 5
    Email author
  • Andres Felipe Millan Cardenas
    • 1
  1. 1.Department of Postgraduate Program in DentistryCEUMA UniversitySão LuisBrazil
  2. 2.Department of Restorative DentistryState University of Ponta GrossaPonta GrossaBrazil
  3. 3.Department of Postgraduate Program in DentistryNorth of Paraná UniversityLondrinaBrazil
  4. 4.Department of Restorative DentistryState University of Ponta GrossaPonta GrossaBrazil
  5. 5.Departamento de OdontologiaUniversidade Estadual de Ponta GrossaPonta GrossaBrazil

Personalised recommendations