Clinical Oral Investigations

, Volume 23, Issue 11, pp 4083–4097 | Cite as

Do electrical current and laser therapies improve bone remodeling during an orthodontic treatment with corticotomy?

  • Ewerton Zaniboni
  • Leonardo Bagne
  • Thaís Camargo
  • Maria Esméria Corezola do Amaral
  • Maira Felonato
  • Thiago Antônio Moretti de Andrade
  • Gláucia Maria Tech dos Santos
  • Guilherme Ferreira Caetano
  • Marcelo Augusto Marreto Esquisatto
  • Milton Santamaria JrEmail author
  • Fernanda Aparecida Sampaio Mendonça
Original Article



Evaluate the bone remodeling during orthodontic movement with corticotomy when submitted to low-intensity electrical stimulation application (microcurrent—MC) and low-level laser therapy (LLLT).

Material and methods

One hundred and fifty Wistar rats were divided into the following 5 groups: (C) submitted to tooth movement; (Cort) tooth movement/corticotomy; (Cort-L) tooth movement/corticotomy/laser AsGaAl 808 nm (4.96J/50s); (Cort-Mc) tooth movement/corticotomy/microcurrent (10 μA/5 min); (Cort-L-Mc) tooth movement/corticotomy and laser/microcurrent alternated. Inflammation, angiogenesis, and osteogenesis were evaluated in the periodontal ligament (PDL) and alveolar bone on the 7th, 14th, and 21st days of orthodontic movement.


The quantification of inflammatory infiltrate, angiogenesis and expression of TGF-β1, VEGF, and collagen type I were favorably modulated by the application of therapies such as low-level laser therapy (LLLT), MC, or both combined. However, electrical stimulation increased fibroblasts, osteoclasts and RANK numbers, birefringent collagen fiber organization, and BMP-7 and IL-6 expression.


Low-level laser therapy (LLLT) and MC application both improved the process of bone remodeling during orthodontic treatment with corticotomy. Still, electrical current therapy promoted a more effective tooth displacement but presented expected root resorption similar to all experimental treatments.

Clinical relevance

It is important to know the effects of minimally invasive therapies on cellular and molecular elements involved in the bone remodeling of orthodontic treatment associated with corticotomy surgery, in order to reduce the adverse effects in the use of this technique and to establish a safer clinical routine.


Electrical stimulation Phototherapy Osteotomy Corticotomy Orthodontic movement Osteogenesis 



The work was supported by the Heminio Ometto Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed and were in accordance with the ethical standards of the Research Ethics Committee of Herminio Ometto University Center (Permit no. 020/2015).

Informed consent

For this type of study, formal consent is not required.


  1. 1.
    Skidmore KJ, Brook KJ, Thomson WM, Harding WJ (2006) Factors influencing treatment time in orthodontic patients. Am J Orthod Dentofac Orthop 129(2):230–238. CrossRefGoogle Scholar
  2. 2.
    Jawad MM, Husein A, Alam MK, Hassan R, Shaari R (2014) Overview of non-invasive factors (low level laser and low intensity pulsed ultrasound) accelerating tooth movement during orthodontic treatment. Lasers Med Sci 29(1):367–372. CrossRefPubMedGoogle Scholar
  3. 3.
    Sebaoun JD, Kantarci A, Turner JW, Carvalho RS, Van Dyke TE, Ferguson DJ (2008) Modeling of trabecular bone and lamina dura following selective alveolar decortication in rats. J Periodontol 79(9):1679–1688. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Al-Naoum F, Hajeer MY, Al-Jundi A (2014) Does alveolar corticotomy accelerate orthodontic tooth movement when retracting upper canines? A split-mouth design randomized controlled trial. J Oral Maxillofac Surg 72(10):1880–1889. CrossRefPubMedGoogle Scholar
  5. 5.
    Fernández-Ferrer L, Montiel-Company JM, Candel-Martí E, Almerich-Silva JM, Peñarrocha-Diago M, Bellot-Arcís C (2016) Corticotomies as a surgical procedure to accelerate tooth movement during orthodontic treatment: a systemic review. Med Oral Patol Oral Cir Bucal 21(6):e703–e712. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kim JH, Kim HW (2013) Rat defect models for bone grafts and tissue engineered bone constructs. Tissue Eng Regen Med 10(6):310–316. CrossRefGoogle Scholar
  7. 7.
    Zainal Ariffin SH, Yamamoto Z, Zainol Abidin IZ, Megat Abdul Wahab R, Zainal Ariffin Z (2011) Cellular and molecular changes in orthodontic tooth movement. Sci World J 11:1788–1803. CrossRefGoogle Scholar
  8. 8.
    Meeran NA (2012) Biological response at the cellular level within the periodontal ligament on application of orthodontic force—an update. J Orthod Sci 1(1):2–10. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sprogar S, Vaupotic T, Cör A, Drevensek M, Drevensek G (2008) The endothelin system mediates bone modeling in the late stage of orthodontic tooth movement in rats. Bone 43(4):740–747. CrossRefPubMedGoogle Scholar
  10. 10.
    Bartzela T, Türp JC, Motschall E, Maltha JC (2009) Medication effects on the rate of orthodontics tooth movement: a systemic literature review. Am J Orthod Dentofac Orthop 135(1):16–26. CrossRefGoogle Scholar
  11. 11.
    Hughes FJ (1995) Cytokines and cell signalling in the periodontium. Oral Dis 1(4):259–265 CrossRefGoogle Scholar
  12. 12.
    Yamamoto T, Kita M, Oseko F, Nakamura T, Imanishi J, Kanamura N (2006) Cytokine production in human periodontal ligament cells stimulated with Porphyromonas gingivalis. J Periodontal Res 41(6):554–559. CrossRefPubMedGoogle Scholar
  13. 13.
    Brooks PJ, Nilforoushan D, Manolson MF, Simmons CA, Gong SG (2009) Molecular markers of early orthodontic tooth movement. Angle Orthod 79(6):1108–1113. CrossRefPubMedGoogle Scholar
  14. 14.
    Krishnan V, Davidovitch Z (2009) On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 88(7):597–608. CrossRefPubMedGoogle Scholar
  15. 15.
    Worapamorn W, Haase HR, Li H, Bartold PM (2001) Growth factors and cytokines modulate gene expression of cell-surface proteoglycans in human periodontal ligament cells. J Cell Physiol 186(3):448–456.<000::AID-JCP1047>3.0.CO;2-V CrossRefPubMedGoogle Scholar
  16. 16.
    Patil AK, Shetty AS, Setty S, Thakur S (2013) Understanding the advances in biology of orthodontic tooth movement for improved ortho-perio interdisciplinary approach. J Indian Soc Periodontol 17(3):309–318. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Masella RS, Meister M (2006) Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofac Orthop 129(4):458–468. CrossRefGoogle Scholar
  18. 18.
    Gao Y, Morita I, Maruo N, Kubota T, Murota S, Aso T (1998) Expression of IL-6 receptor and GP130 inmouse bonemarrow cells during osteoclast differentiation. Bone 22(5):487–493. CrossRefPubMedGoogle Scholar
  19. 19.
    Fox SW, Fuller K, Bayley KE, Lean JM, Chambers TJ (2000) TGF-beta 1 and IFN-gamma direct macrophage activation by TNF-alpha to osteoclastic or cytocidal phenotype. J Immunol 165(9):4957–4963. CrossRefPubMedGoogle Scholar
  20. 20.
    Meeran NA (2013) Cellular response within the periodontal ligament on application of orthodontic forces. J Indian Soc Periodontol 17(1):16–20. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wu M, Chen G, Li YP (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yoshitake F, Itoh S, Narita H, Ishihara K, Ebisu S (2008) Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J Biol Chem 283(17):11535–11540. CrossRefPubMedGoogle Scholar
  23. 23.
    Karsenty G (2003) The complexities of skeletal biology. Nature 423(6937):316–318. CrossRefPubMedGoogle Scholar
  24. 24.
    Janssens K, ten Dijke P, Janssens S, Van Hul W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26(6):743–774. CrossRefPubMedGoogle Scholar
  25. 25.
    Chen G, Deng C, Li YP (2012) TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8(2):272–288. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tachi K, Takami M, Sato H, Mochizuki A, Zhao B, Miyamoto Y, Tsukasaki H, Inoue T, Shintani S, Koike T, Honda Y, Suzuki O, Baba K, Kamijo R (2011) Enhancement of bone morphogenetic protein-2-induced ectopic bone formation by transforming growth factor-β1. Tissue Eng Part A 17(5–6):597–606. CrossRefPubMedGoogle Scholar
  27. 27.
    Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38(12):1424–1429. CrossRefPubMedGoogle Scholar
  28. 28.
    Di Domenico M, D’apuzzo F, Feola A, Cito L, Monsurrò A, Pierantoni GM, Berrino L, DeRosa A, Polimeni A, Perillo L (2012) Cytokines and VEGF induction in orthodontic movement in animal models. J Biomed Biotechnol 2012:201689–201684. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yang YQ, Tan YY, Wong R, Wenden A, Zhang LK, Rabie AB (2012) The role of vascular endothelial growth factor in ossification. Int J Oral Sci 4(2):64–68. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Schipani E (2006) Hypoxia and HIF-1alpha in chondrogenesis. Ann N Y Acad Sci 1068:66–73. CrossRefPubMedGoogle Scholar
  31. 31.
    Park HJ, Baek KH, Lee HL, Kwon A, Hwang HR, Qadir AS, Woo KM, Ryoo HM, Baek JH (2011) Hypoxia inducible factor-1α directly induces the expression of receptor activator of nuclear factor-κB ligand in periodontal ligament fibroblasts. Mol Cells 31(6):573–578. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Long H, Pyakurel U, Wang Y, Liao L, Zhou Y, Lai W (2013) Interventions for accelerating orthodontic tooth movement: a systematic review. Angle Orthod 83(1):164–171. CrossRefPubMedGoogle Scholar
  33. 33.
    Kim DH, Park YG, Kang SG (2008) The effects of electrical current from a micro-electrical device on tooth movement. Korean J Orthod 38(5):337–346. CrossRefGoogle Scholar
  34. 34.
    Spadari GS, Zaniboni E, Vedovello SA, Santamaria MP, do Amaral ME, Dos Santos GM, Esquisatto MA, Mendonca FA, Santamaria M Jr (2017) Electrical stimulation enhances tissue reorganization during orthodontic tooth movement in rats. Clin Oral Investig 21(1):111–120. CrossRefPubMedGoogle Scholar
  35. 35.
    Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26(3):282–291.<282:D-LSM6>3.0.CO;2-X CrossRefPubMedGoogle Scholar
  36. 36.
    Nalcaci R, Cokakoglu S (2013) Lasers in orthodontics. Eur J Dent 7(Suppl 1):S119–S125. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yassaei S, Fekrazad R, Shahraki N (2013) Effect of low level laser therapy on orthodontic tooth movement: a review article. J Dent (Tehran) 10(3):264–272Google Scholar
  38. 38.
    Dalaie K, Hamedi R, Kharazifard MJ, Mahdian M, Bayat M (2015) Effect of low-level laser therapy on orthodontic tooth movement: a clinical investigation. J Dent (Tehran) 12(4):249–256Google Scholar
  39. 39.
    Deana NF, Zaror C, Sandoval P, Alves N (2017) Effectiveness of low-level laser therapy in reducing orthodontic pain: a systematic review and meta-analysis. Pain Res Manag 2017:8560652–8560618. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kim SJ, Moon SU, Kang SG, Park YG (2009) Effects of low-level laser therapy after corticision on tooth movement and paradental remodeling. Lasers Surg Med 41(7):524–533. CrossRefPubMedGoogle Scholar
  41. 41.
    Institute for Laboratory Animal Research (2011) Guide for the care, and use of laboratory animals. National Academies Press, Washington, DCGoogle Scholar
  42. 42.
    Lee W, Karapetyan G, Moats R, Yamashita DD, Moon HB, Ferguson DJ, Yen S (2008) Corticotomy-osteotomy-assisted tooth movement microCTs differ. J Dent Res 87(9):861–867. CrossRefPubMedGoogle Scholar
  43. 43.
    Franzoni JS, Soares FMP, Zaniboni E, Vedovello Filho M, Santamaria MP, Dos Santos GMT, Esquisatto MAM, Felonato M, Mendonca FAS, Franzini CM, Santamaria M Jr (2017) Zoledronic acid and alendronate sodium and the implications in orthodontic movement. Orthod Craniofac Res 20(3):164–169. CrossRefPubMedGoogle Scholar
  44. 44.
    Zaniboni E, Vedovello Filho M, Santamaria MP, Jardini MAN, Martins-Ortiz MF, Consolaro A, Santamaria M Jr (2017) Root morphology can be a risk factor for periodontal damage and root resorption in orthodontic movement. Braz J Oral Sci 16(e17090):1–8. CrossRefGoogle Scholar
  45. 45.
    Dominici M (1902) Sur une methode de technique histologique appropriee a l’etude du systeme hematopoietique. Compt Rend Soc Biol 54:221–223Google Scholar
  46. 46.
    Boas Nogueira AV, Chaves de Souza JA, Kim YJ, Damião de Sousa-Neto M, Chan Cirelli C, Cirelli JA (2013) Orthodontic force increases interleukin-1β and tumor necrosis factor-α expression and alveolar bone loss in periodontitis. J Periodontol 84:1319–1326. CrossRefPubMedGoogle Scholar
  47. 47.
    Wang L, Lee W, Lei DL, Liu YP, Yamashita DD, Yen SL (2009) Tisssue responses in corticotomy- and osteotomy-assisted tooth movements in rats: histology and immunostaining. Am J Orthod Dentofacial Orthop 136:770.e1–770.e11. CrossRefGoogle Scholar
  48. 48.
    Mountziaris PM, Mikos AG (2008) Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng B Rev 14(2):179–186. CrossRefGoogle Scholar
  49. 49.
    Bassett CA (1967) Biologic significance of piezoelectricity. Calcif Tissue Res 1(4):252–272. CrossRefGoogle Scholar
  50. 50.
    El-Angbawi A, McIntyre GT, Fleming PS, Bearn DR (2015) Non-surgical adjunctive interventions for accelerating tooth movement in patients undergoing fixed orthodontic treatment. Cochrane Database Syst Rev 11:CD010887. CrossRefGoogle Scholar
  51. 51.
    Oshiro T, Shiotani A, Shibasaki Y, Sasaki T (2002) Osteoclast induction in periodontal tissue during experimental movement of incisors in osteoprotegerin-deficient mice. Anat Rec 266(4):218–225. CrossRefPubMedGoogle Scholar
  52. 52.
    Kanzaki H, Chiba M, Shimizu Y, Mitani H (2001) Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res 80(3):887–891. CrossRefPubMedGoogle Scholar
  53. 53.
    Kurohama T, Hotokezaka H, Hashimoto M, Tajima T, Arita K, Kondo T, Ino A, Yoshida N (2017) Increasing the amount of corticotomy does not affect orthodontic tooth movement or root resorption, but accelerates alveolar bone resorption in rats. Eur J Orthod 39(3):277–286. CrossRefPubMedGoogle Scholar
  54. 54.
    Verna C, Dalstra M, Melsen B (2003) Bone turnover rate in rats does not influence root resorption induced by orthodontic treatment. Eur J Orthod 25(4):359–363. CrossRefPubMedGoogle Scholar
  55. 55.
    Hassan AH, Al-Fraidi AA, Al-Saeed SH (2010) Corticotomy-assisted orthodontic treatment. Saudi Med J 36(7):794–801. CrossRefGoogle Scholar
  56. 56.
    Medrado AR, Pugliese LS, Reis SR, Andrade ZA (2003) Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med 32(3):239–244. CrossRefPubMedGoogle Scholar
  57. 57.
    Kipshidze N, Nikolaychik V, Keelan MH, Shankar LR, Khanna A, Kornowski R, Leon M, Moses J (2001) Low-power helium: neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg Med 28(4):355–364. CrossRefPubMedGoogle Scholar
  58. 58.
    Medrado AP, Soares AP, Santos ET, Reis SR, Andrade ZA (2008) Influence of laser photobiomodulation upon connective tissue remodeling during wound healing. J Photochem Photobiol B 92(3):144–152. CrossRefPubMedGoogle Scholar
  59. 59.
    Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissuelevel reactions to orthodontic force. Am J Orthod Dentofacial Orthop 129:469.e1–469.32. CrossRefGoogle Scholar
  60. 60.
    Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA (2008) Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 87(2):107–118. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhao L, Jiang S, Hantash BM (2010) Transforming growth factor beta1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Eng A 16(2):725–733. CrossRefGoogle Scholar
  62. 62.
    Bismar H, Klöppinger T, Schuster EM, Balbach S, Diel I, Ziegler R, Pfeilschifter J (1999) Transforming growth factor beta (TGF-beta) levels in the conditioned media of human bone cells: relationship to donor age, bone volume, and concentration of TGF-beta in human bone matrix in vivo. Bone 24(6):565–569. CrossRefPubMedGoogle Scholar
  63. 63.
    Garlet TP, Coelho U, Silva JS, Garlet GP (2007) Cytokine expression. Pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci 115(5):355–362. CrossRefPubMedGoogle Scholar
  64. 64.
    Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9(Suppl 1):S1. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nimeri G, Kau CH, Abou-Kheir NS, Corona R (2013) Acceleration of tooth movement during orthodontic treatment—a frontier in orthodontics. Prog Orthod 29(14):42. CrossRefGoogle Scholar
  66. 66.
    Huang H, Williams RC, Kyrkanides S (2014) Accelerated orthodontic tooth movement: molecular mechanisms. Am J Orthod Dentofac Orthop 146(5):620–632. CrossRefGoogle Scholar
  67. 67.
    Alhashimi N, Frithiof L, Brudvik P, Bakhiet M (2001) Orthodontic tooth movement and de novo synthesis of proinflammatory cytokines. Am J Orthod Dentofac Orthop 119(3):307–312. CrossRefGoogle Scholar
  68. 68.
    Nobuto T, Suwa F, Kono T, Taguchi Y, Takahashi T, Kanemura N, Terada S, Imai H (2005) Microvascular response in the periosteum following mucoperiosteal flap surgery in dogs: angiogenesis and bone resorption and formation. J Periodontol 76(8):1346–1353. CrossRefPubMedGoogle Scholar
  69. 69.
    Crotti TN, Smith MD, Findlay DM, Zreiqat H, Ahern MJ, Weedon H, Hatzinikolous G, Capone M, Holding C, Haynes DR (2004) Factors regulating osteoclast formation in human tissues adjacent to peri-implant bone loss: expression of receptor activator NFkappaB, RANK ligand and osteoprotegerin. Biomaterials 25(4):565–573. CrossRefPubMedGoogle Scholar
  70. 70.
    Ogasawara T, Yoshimine Y, Kiyoshima T, Kobayashi I, Matsuo K, Akamine A, Sakai H (2004) In situ expression of RANKL, RANK, osteoprotegerin and cytokines in osteoclasts of rat periodontal tissue. J Periodontal Res 39(1):42–49. CrossRefPubMedGoogle Scholar
  71. 71.
    Fonseca JH Jr, Bagne L, Meneghetti DH, GMT DS, MAM E, de Andrade TAM, do Amaral MEC, Felonato M, Caetano GF, Santamaria M Jr, FAS M (2018) Electrical stimulation: complementary therapy to improve the performance of grafts in bone defects? Study in animal model. J Biomed Mater Res B Appl Biomater. CrossRefGoogle Scholar
  72. 72.
    Schipani E, Maes C, Carmeliet G, Semenza GL (2009) Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res 24:1347–1353. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ (2004) Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res 419:30–37. CrossRefGoogle Scholar
  74. 74.
    Zhou J, Dong J (2012) Vascularization in the bone repair. In: Lin Y (ed) Osteogenesis. IntechOpen, Shanghai, pp 287–296. CrossRefGoogle Scholar
  75. 75.
    Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marmé D (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87(8):3336–3343. CrossRefPubMedGoogle Scholar
  76. 76.
    Cecchi S, Bennet SJ, Arora M (2016) Bone morphogenetic protein-7: review of signalling and efficacy in fracture healing. J Orthop Translat 4:28–34. CrossRefPubMedGoogle Scholar
  77. 77.
    Wang Y, Rouabhia M, Lavertu D, Zhang Z (2017) Pulsed electrical stimulation modulates fibroblasts behavior through the Smad signaling pathway. J Tissue Eng Regen Med 11(4):1110–1121. CrossRefPubMedGoogle Scholar
  78. 78.
    Pugliese LS, Medrado AP, Reis SR, Andrade Zde A (2003) The influence of low-level laser therapy on biomodulation of collagen and elastic fibers. Pesqui Odontol Bras 17(4):307–313. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ewerton Zaniboni
    • 1
  • Leonardo Bagne
    • 1
  • Thaís Camargo
    • 1
  • Maria Esméria Corezola do Amaral
    • 1
  • Maira Felonato
    • 1
  • Thiago Antônio Moretti de Andrade
    • 1
  • Gláucia Maria Tech dos Santos
    • 1
  • Guilherme Ferreira Caetano
    • 1
  • Marcelo Augusto Marreto Esquisatto
    • 1
  • Milton Santamaria Jr
    • 1
    • 2
    Email author
  • Fernanda Aparecida Sampaio Mendonça
    • 1
  1. 1.Graduate Program of Biomedical Sciences, Herminio Ometto University CenterUNIARARASArarasBrazil
  2. 2.Graduate Program of Orthodontics, Herminio Ometto University CenterUNIARARASArarasBrazil

Personalised recommendations