Angiogenic effect of platelet-rich concentrates on dental pulp stem cells in inflamed microenvironment

  • Priyadarshni BindalEmail author
  • Nareshwaran Gnanasegaran
  • Umesh Bindal
  • Nazmul Haque
  • Thamil Selvee Ramasamy
  • Wen Lin Chai
  • Noor Hayaty Abu Kasim
Original Article



In this study, we aimed to determine the suitable concentrations of human platelet lysate (HPL) and platelet-rich plasma (PRP) for maintaining the in vitro proliferative and angiogenic potential of inflamed dental pulp stem cells.

Materials and methods

Lipopolysaccharide (LPS)-induced inflamed dental pulp-derived stem cells (iDPSCs) were treated with different concentrations of HPL and PRP (10% and 20%) followed by determination of viability using Alamar Blue assay. Expression of angiogenesis-, adhesion-, and inflammation-regulating genes was also analyzed using RT-qPCR array. Furthermore, expression of growth factors at protein level in the cell culture microenvironment was measured using multiplex assay.


Viability of iDPSCs was significantly (p < 0.05) higher in 20% HPL-supplemented media compared to iDPSCs. Expression of 10 out of 12 selected angiogenic genes, four out of seven adhesion molecules, and seven out of nine cytokine-producing genes were significantly (p < 0.05) higher in cells maintained in 20% HPL-supplemented media compared to that in FBS-supplemented media. Furthermore, expression of all the selected growth factors was significantly higher (p < 0.05) in the supernatants from 20% HPL media at 12 and 24 h post-incubation.


This study suggests that 20% HPL could be optimum to stimulate angiogenesis-related factors in iDPSCs while maintaining their viability.

Clinical relevance

This data may suggest the potential use of 20% HPL for expanding DPSCs scheduled for clinical trials for regenerative therapies including dental pulp regeneration.


Cytokines Growth factors Platelet lysate Platelet-rich plasma Viability 



This study was funded by High Impact Research MOHE Grant UM.C/HIR/MOHE/DENT/05 from the Ministry of Higher Education Malaysia.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Berkovitz BK, Holland GR, Moxham BJ (2016) Oral anatomy, histology and embryology. ElsevierGoogle Scholar
  2. 2.
    Yu C, Abbott P (2007) An overview of the dental pulp: its functions and responses to injury. Aust Dent J 52(s1):S4–S6CrossRefGoogle Scholar
  3. 3.
    Heyeraas K, Kvinnsland I (1991) Tissue pressure and blood flow in pulpal inflammation. Proc Finn Dent Soc 88:393–401Google Scholar
  4. 4.
    Farges J-C (2009) Understanding dental pulp innate immunity - a basis for identifying new targets for therapeutic agents that dampen inflammation. J Appl Oral Sci 17(3), i-iGoogle Scholar
  5. 5.
    Yumoto H, Hirao K, Hosokawa Y, Kuramoto H, Takegawa D, Nakanishi T, Matsuo T (2018) The roles of odontoblasts in dental pulp innate immunity. Jpn Dent Sci Rev 54(3):105–117CrossRefGoogle Scholar
  6. 6.
    Huang GT (2009) Pulp and dentin tissue engineering and regeneration: current progress. Regen Med 4(5):697–707CrossRefGoogle Scholar
  7. 7.
    Yang J, Yuan G, Chen Z (2016) Pulp regeneration: current approaches and future challenges. Front Physiol 7Google Scholar
  8. 8.
    Yazid FB, Gnanasegaran N, Kunasekaran W, Govindasamy V, Musa S (2014) Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clin Oral Investig 18(9):2103–2112CrossRefGoogle Scholar
  9. 9.
    Sakai V, Zhang Z, Dong Z, Neiva K, Machado M, Shi S et al (2010) SHED differentiate into functional odontoblasts and endothelium. J Dent Res 89(8):791–796CrossRefGoogle Scholar
  10. 10.
    Alongi DJ, Yamaza T, Song Y, Fouad AF, Romberg EE, Shi S, Tuan RS, Huang GTJ (2010) Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med 5(4):617–631CrossRefGoogle Scholar
  11. 11.
    Gnanasegaran N, Govindasamy V, Musa S, Abu Kasim NH (2018) Innate molecular signature of stem cells from carious teeth influences differentiation toward endodermal endpoint. J Immunol Regen Med 1:21–31CrossRefGoogle Scholar
  12. 12.
    Nör J (2006) Buonocore memorial lecture: tooth regeneration in operative dentistry. Oper Dent 31(6):633–642CrossRefGoogle Scholar
  13. 13.
    Grando Mattuella L, Westphalen Bento L, de Figueiredo JA, Nor JE, de Araujo FB, Fossati AC (2007) Vascular endothelial growth factor and its relationship with the dental pulp. J Endodont 33(5):524–530CrossRefGoogle Scholar
  14. 14.
    Gorin C, Rochefort GY, Bascetin R, Ying H, Lesieur J, Sadoine J, Beckouche N, Berndt S, Novais A, Lesage M, Hosten B, Vercellino L, Merlet P, le-Denmat D, Marchiol C, Letourneur D, Nicoletti A, Vital SO, Poliard A, Salmon B, Muller L, Chaussain C, Germain S (2016) Priming dental pulp stem cells with fibroblast growth factor-2 increases angiogenesis of implanted tissue-engineered constructs through hepatocyte growth factor and vascular endothelial growth factor secretion. Stem Cells Transl Med 5(3):392–404CrossRefGoogle Scholar
  15. 15.
    Gonçalves SB, Dong Z, Bramante CM, Holland GR, Smith AJ, Nör JE (2007) Tooth slice–based models for the study of human dental pulp angiogenesis. J Endod 33(7):811–814CrossRefGoogle Scholar
  16. 16.
    Mullane EM, Dong Z, Sedgley C, Hu J-C, Botero T, Holland G et al (2008) Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res 87(12):1144–1148CrossRefGoogle Scholar
  17. 17.
    Andia I, Maffulli N (2013) Platelet-rich plasma for managing pain and inflammation in osteoarthritis. Nat Rev Rheumatol 9(12):721–730CrossRefGoogle Scholar
  18. 18.
    Teixeira LSM, Leijten JC, Wennink JW, Chatterjea AG, Feijen J, van Blitterswijk CA et al (2012) The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation. Biomaterials 33(14):3651–3661CrossRefGoogle Scholar
  19. 19.
    Kajikawa Y, Morihara T, Sakamoto H, Matsuda Ki, Oshima Y, Yoshida A, Nagae M, Arai Y, Kawata M, Kubo T (2008) Platelet-rich plasma enhances the initial mobilization of circulation-derived cells for tendon healing. J Cell Physiol 215(3):837–845CrossRefGoogle Scholar
  20. 20.
    El-Sharkawy H, Kantarci A, Deady J, Hasturk H, Liu H, Alshahat M et al (2007) Platelet-rich plasma: growth factors and pro-and anti-inflammatory properties. J Periodontol 78(4):661–669CrossRefGoogle Scholar
  21. 21.
    Hammond JW, Hinton RY, Curl LA, Muriel JM, Lovering RM (2009) Use of autologous platelet-rich plasma to treat muscle strain injuries. Am J Sports Med 37(6):1135–1142CrossRefGoogle Scholar
  22. 22.
    Sampson S, Gerhardt M, Mandelbaum B (2008) Platelet rich plasma injection grafts for musculoskeletal injuries: a review. Current Reviews in Musculoskeletal Medicine 1(3–4):165–174CrossRefGoogle Scholar
  23. 23.
    Govindasamy V, Abdullah AN, Ronald VS, Musa S, Ab Aziz ZA, Zain RB et al (2010) Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. J Endodont 36(9):1504–1515CrossRefGoogle Scholar
  24. 24.
    Bindal P, Ramasamy TS, Kasim NHA, Gnanasegaran N, Chai WL (2018) Immune responses of human dental pulp stem cells in lipopolysaccharide-induced microenvironment. Cell Biol Int 42(7):832–840CrossRefGoogle Scholar
  25. 25.
    Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM (1998) Chemotactic properties of angiopoietin-1 and-2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 273(29):18514–18521CrossRefGoogle Scholar
  26. 26.
    Gao B, Zhou X, Zhou X, Pi C, Xu R, Wan M, Yang J, Zhou Y, Liu C, Sun J, Zhang Y, Zheng L (2015) BMP7 and EREG contribute to the inductive potential of dental mesenchyme. Sci Rep 5:9903CrossRefGoogle Scholar
  27. 27.
    Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141(7):1659–1673CrossRefGoogle Scholar
  28. 28.
    Orlandini M, Marconcini L, Ferruzzi R, Oliviero S (1996) Identification of a c-fos-induced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc Natl Acad Sci 93(21):11675–11680CrossRefGoogle Scholar
  29. 29.
    Sainson R, Aoto J, Nakatsu M, Holderfield M, Conn E, Koller E, Hughes CC (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19(8):1027–1029CrossRefGoogle Scholar
  30. 30.
    Sato N, Beitz J, Kato J, Yamamoto M, Clark J, Calabresi P et al (1993) Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am J Pathol 142(4):1119Google Scholar
  31. 31.
    Ferrari G, Cook BD, Terushkin V, Pintucci G, Mignatti P (2009) Transforming growth factor-beta 1 (TGF-β1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis. J Cell Physiol 219(2):449–458CrossRefGoogle Scholar
  32. 32.
    Dufraine J, Funahashi Y, Kitajewski J (2008) Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene 27(38):5132–5137CrossRefGoogle Scholar
  33. 33.
    Geretti E, Klagsbrun M (2007) Neuropilins: novel targets for anti-angiogenesis therapies. Cell Adhes Migr 1(2):56–61CrossRefGoogle Scholar
  34. 34.
    Limb GA, Chignell AH, Green W, LeRoy F, Dumonde DC (1996) Distribution of TNF alpha and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy. Br J Ophthalmol 80(2):168–173CrossRefGoogle Scholar
  35. 35.
    Adachi H, Tsujimoto M (2002) FEEL-1, a novel scavenger receptor with in vitro bacteria-binding and angiogenesis-modulating activities. J Biol Chem 277(37):34264–34270CrossRefGoogle Scholar
  36. 36.
    Salcedo R, Young HA, Ponce ML, Ward JM, Kleinman HK, Murphy WJ, Oppenheim JJ (2001) Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J Immunol 166(12):7571–7578CrossRefGoogle Scholar
  37. 37.
    Stamatovic SM, Keep RF, Mostarica-Stojkovic M, Andjelkovic AV (2006) CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol 177(4):2651–2661CrossRefGoogle Scholar
  38. 38.
    Sauteur L, Krudewig A, Herwig L, Ehrenfeuchter N, Lenard A, Affolter M, Belting HG (2014) Cdh5/VE-cadherin promotes endothelial cell interface elongation via cortical actin polymerization during angiogenic sprouting. Cell Rep 9(2):504–513CrossRefGoogle Scholar
  39. 39.
    Hayashi H, Sano H, Seo S, Kume T (2008) The Foxc2 transcription factor regulates angiogenesis via induction of integrin β3 expression. J Biol Chem 283(35):23791–23800CrossRefGoogle Scholar
  40. 40.
    Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S (2010) Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest 120(4):1151–1164CrossRefGoogle Scholar
  41. 41.
    Apte RN, Voronov E (2008) Is interleukin-1 a good or bad ‘guy’in tumor immunobiology and immunotherapy? Immunol Rev 222(1):222–241CrossRefGoogle Scholar
  42. 42.
    Fan Y, Ye J, Shen F, Zhu Y, Yeghiazarians Y, Zhu W, Chen Y, Lawton MT, Young WL, Yang GY (2008) Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab 28(1):90–98CrossRefGoogle Scholar
  43. 43.
    Fajardo LF, Kwan HH, Kowalski J, Prionas S, Allison A (1992) Dual role of tumor necrosis factor-alpha in angiogenesis. Am J Pathol 140(3):539–544Google Scholar
  44. 44.
    Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q, Richmond A, Strieter R, Dey SK, DuBois RN (2006) CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med 203(4):941–951CrossRefGoogle Scholar
  45. 45.
    Billottet C, Quemener C, Bikfalvi A (2013) CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1836(2):287–295CrossRefGoogle Scholar
  46. 46.
    Rowland KJ, Diaz-Miron J, Guo J, Erwin CR, Mei J, Worthen GS, Warner BW (2014) CXCL5 is required for angiogenesis, but not structural adaptation after small bowel resection. J Pediatr Surg 49(6):976–980CrossRefGoogle Scholar
  47. 47.
    Haque N, Abu Kasim NH (2017) Pooled human serum increases regenerative potential of in vitro expanded stem cells from human extracted deciduous teeth. In: Adv Exp Med Biol, Springer US, Boston, MA, pp 1–16
  48. 48.
    Bouchentouf M, Paradis P, Forner KA, Cuerquis J, Boivin MN, Zheng J, Boulassel MR, Routy JP, Schiffrin EL, Galipeau J (2010) Monocyte derivatives promote angiogenesis and myocyte survival in a model of myocardial infarction. Cell Transplant 19(4):369–386CrossRefGoogle Scholar
  49. 49.
    Praidou A, Androudi S, Brazitikos P, Karakiulakis G, Papakonstantinou E, Dimitrakos S (2010) Angiogenic growth factors and their inhibitors in diabetic retinopathy. Curr Diabetes Rev 6(5):304–312CrossRefGoogle Scholar
  50. 50.
    Zhu Y, Yuan M, Meng H, Wang A, Guo Q, Wang Y et al (2013) Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthr Cartil 21(11):1627–1637CrossRefGoogle Scholar
  51. 51.
    Whitman DH, Berry RL, Green DM (1997) Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg 55(11):1294–1299CrossRefGoogle Scholar
  52. 52.
    Andia I, Rubio-Azpeitia E (2014) Angiogenic and innate immune responses triggered by PRP in tendon cells are not modified by hyperuricemia. Muscles, ligaments and tendons journal 4(3):292Google Scholar
  53. 53.
    Li C-y, Wu X-y, Tong J-b, Yang X-x, Zhao J-l, Zheng Q-f, Zhao GB, Ma ZJ (2015) Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther 6(1):55CrossRefGoogle Scholar
  54. 54.
    Forte D, Ciciarello M, Valerii MC, De Fazio L, Cavazza E, Giordano R et al (2015) Human cord blood-derived platelet lysate enhances the therapeutic activity of adipose-derived mesenchymal stromal cells isolated from Crohn’s disease patients in a mouse model of colitis. Stem Cell Res Ther 6(1):170CrossRefGoogle Scholar
  55. 55.
    Crespo-Diaz R, Behfar A, Butler GW, Padley DJ, Sarr MG, Bartunek J, Dietz AB, Terzic A (2011) Platelet lysate consisting of a natural repair proteome supports human mesenchymal stem cell proliferation and chromosomal stability. Cell Transplant 20(6):797–811CrossRefGoogle Scholar
  56. 56.
    Fortunato, T.M., Beltrami, C., Emanueli, C., De Bank, P.A., Pula, G. (2016). Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications. Sci Rep, 6Google Scholar
  57. 57.
    Oliveira SM, Pirraco RP, Marques AP, Santo VE, Gomes ME, Reis RL et al. (2015). Platelet lysate-based pro-angiogenic nanocoatings. Acta BiomaterGoogle Scholar
  58. 58.
    Middleton KK, Barro V, Muller B, Terada S, Fu FH (2012) Evaluation of the effects of platelet-rich plasma (PRP) therapy involved in the healing of sports-related soft tissue injuries. The Iowa Orthopaedic Journal 32:150Google Scholar
  59. 59.
    Galliera E, Corsi M, Banfi G (2011) Platelet rich plasma therapy: inflammatory molecules involved in tissue healing. J Biol Regul Homeost Agents 26(2 Suppl 1):35S–42SGoogle Scholar
  60. 60.
    Barsotti MC, Losi P, Briganti E, Sanguinetti E, Magera A, Al Kayal T et al (2013) Effect of platelet lysate on human cells involved in different phases of wound healing. PLoS One 8(12):e84753CrossRefGoogle Scholar
  61. 61.
    Bendinelli P, Matteucci E, Dogliotti G, Corsi MM, Banfi G, Maroni P, Desiderio MA (2010) Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-κB inhibition via HGF. J Cell Physiol 225(3):757–766CrossRefGoogle Scholar
  62. 62.
    Drago L, Bortolin M, Vassena C, Taschieri S, Del Fabbro M (2013) Antimicrobial activity of pure platelet-rich plasma against microorganisms isolated from oral cavity. BMC Microbiol 13(1):1CrossRefGoogle Scholar
  63. 63.
    Losi P, Briganti E, Errico C, Lisella A, Sanguinetti E, Chiellini F, Soldani G (2013) Fibrin-based scaffold incorporating VEGF-and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater 9(8):7814–7821CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Priyadarshni Bindal
    • 1
    • 2
    Email author
  • Nareshwaran Gnanasegaran
    • 2
    • 3
  • Umesh Bindal
    • 4
  • Nazmul Haque
    • 5
  • Thamil Selvee Ramasamy
    • 6
  • Wen Lin Chai
    • 2
  • Noor Hayaty Abu Kasim
    • 2
  1. 1.Centre for Rural HealthSchool of Health Sciences University of TasmaniaLauncestonAustralia
  2. 2.Department of Restorative Dentistry, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  3. 3.Institute of Molecular and Cell Biology (IMCB)Agency for Science Technology and Research (A*STAR)ProteosSingapore
  4. 4.Faculty of Health and Medical SciencesTaylor’s UniversitySubang JayaMalaysia
  5. 5.Faculty of DentistryMAHSA UniversityJenjaromMalaysia
  6. 6.Department of Molecular Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations