Advertisement

Shear bond strength and interface analysis between a resin composite and a recent high-viscous glass ionomer cement bonded with various adhesive systems

  • Philippe Francois
  • Elsa Vennat
  • Stéphane Le Goff
  • Nathalie Ruscassier
  • Jean-Pierre Attal
  • Elisabeth Dursun
Original Article
  • 181 Downloads

Abstract

Objective

This study investigated the shear bond strength (SBS) and interface between a resin composite and a new high-viscous glass ionomer cement (HV-GIC), a HV-GIC, a resin-modified glass ionomer cement (RM-GIC), a bulk-fill flowable composite, and a regular flowable composite bonded with various adhesive systems.

Methods and materials

A resin composite (Filtek Z350) was bonded to a new HV-GIC (EQUIA Forte Fil) using various adhesive systems, including a universal adhesive in self-etch and etch-and-rinse mode (Scotchbond Universal), a two-step etch-and-rinse adhesive (Scotchbond 1-XT), a one-step self-etch adhesive (Optibond All-in-one) tested also after silane application (Monobond Plus), and a coating material (EQUIA Forte Coat). The resin composite was also bonded to a HV-GIC (Fuji IX GP), a RM-GIC (Fuji II LC), a bulk-fill flowable composite (SDR), and a regular flowable composite (Tetric Evo Flow) with the universal adhesive in self-etch mode (Scotchbond Universal). Two-way ANOVA followed by Dunnett’s post hoc test was used to investigate the difference in SBS. Failures were analyzed by chi-square test. Bonding interfaces were examined by environmental scanning electron microscopy (E-SEM).

Results

SBS to EQUIA Forte Fil was significantly lower with Scotchbond 1-XT than with all other adhesive systems. By using Scotchbond Universal with the self-etch technique, the SBS to EQUIA Forte Fil was significantly higher than the SBS to Fuji IX GP and significantly lower than the SBS to Fuji II LC, SDR, and Tetric Evo Flow. E-SEM images showed an intimate contact at all interfaces examined.

Conclusion

EQUIA Forte Fil showed satisfactory SBS and interfaces with all adhesives tested.

Clinical relevance

Bonding between the resin composite and HV-GIC can be achieved using a universal adhesive in self-etch mode, an easy-to-use adhesive system.

Keywords

High-viscous glass ionomer cement Universal adhesive Sandwich technique Proximal box elevation Shear bond strength Environmental scanning electron microscopy 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

References

  1. 1.
    Dietschi D, Spreafico R (2015) Evidence-based concepts and procedures for bonded inlays and onlays. Part I. Historical perspectives and clinical rationale for a biosubstitutive approach. Int J Esthet Dent 10:210–227PubMedGoogle Scholar
  2. 2.
    Rocca GT, Krejci I (2007) Bonded indirect restorations for posterior teeth: from cavity preparation to provisionalization. Quintessence Int 38:371–379PubMedGoogle Scholar
  3. 3.
    Zaruba M, Göhring TN, Wegehaupt FJ, Attin T (2013) Influence of a proximal margin elevation technique on marginal adaptation of ceramic inlays. Acta Odontol Scand 71:317–324.  https://doi.org/10.3109/00016357.2012.680905 CrossRefPubMedGoogle Scholar
  4. 4.
    Fragkou S, Nikolaidis A, Tsiantou D, Achilias D, Kotsanos N (2013) Tensile bond characteristics between composite resin and resin-modified glass-ionomer restoratives used in the open-sandwich technique. Eur Arch Paediatr Dent 14:239–245.  https://doi.org/10.1007/s40368-013-0055-2 CrossRefPubMedGoogle Scholar
  5. 5.
    Andersson-Wenckert IE, van Dijken JW, Kieri C (2004) Durability of extensive Class II open-sandwich restorations with a resin-modified glass ionomer cement after 6 years. Am J Dent 17:43–50Google Scholar
  6. 6.
    Dietschi D, Spreafico R (1998) Current clinical concepts for adhesive cementation of tooth-colored posterior restorations. Pract Periodontics Aesthetic Dent 10:47–54 quiz 56Google Scholar
  7. 7.
    Kielbassa AM, Philipp F (2015) Restoring proximal cavities of molars using the proximal box elevation technique: systematic review and report of a case. Quintessence Int 46:751–764.  https://doi.org/10.3290/j.qi.a34459 CrossRefPubMedGoogle Scholar
  8. 8.
    Ilgenstein I, Zitzmann NU, Bühler J, Wegehaupt FJ, Attin T, Weiger R, Krastl G (2015) Influence of proximal box elevation on the marginal quality and fracture behavior of root-filled molars restored with CAD/CAM ceramic or composite onlays. Clin Oral Investig 19:1021–1028.  https://doi.org/10.1007/s00784-014-1325-z CrossRefPubMedGoogle Scholar
  9. 9.
    Dietschi D, Olsburgh S, Krejci I, Davidson C (2003) In vitro evaluation of marginal and internal adaptation after occlusal stressing of indirect class II composite restorations with different resinous bases. Eur J Oral Sci 111:73–80CrossRefGoogle Scholar
  10. 10.
    Marchesi G, Spreafico R, Frassetto A, Turco G, Di Lenarda R, Cadenaro M, Breschi L (2014) Cervical margin-relocation of CAD/CAM lithium disilicate ceramic crown using resin-composite. Dent Mater 30:e14. doi:  https://doi.org/10.1016/j.dental.2014.08.029 CrossRefGoogle Scholar
  11. 11.
    Chuang SF, Liu JK, Chao CC, Liao FP, Chen YH (2001) Effects of flowable composite lining and operator experience on microleakage and internal voids in class II composite restorations. J Prosthet Dent 85:177–183.  https://doi.org/10.1067/mpr.2001.113780 CrossRefPubMedGoogle Scholar
  12. 12.
    Boruziniat A, Gharaee S, Sarraf Shirazi A, Majidinia S, Vatanpour M (2016) Evaluation of the efficacy of flowable composite as lining material on microleakage of composite resin restorations: a systematic review and meta-analysis. Quintessence Int 47:93–101.  https://doi.org/10.3290/j.qi.a35260 CrossRefPubMedGoogle Scholar
  13. 13.
    Hernandes NMAP, Catelan A, Soares GP, Ambrosano GM, Lima DA, Marchi GM, Martins LR, Aguiar FH (2014) Influence of flowable composite and restorative technique on microleakage of class II restorations. J Investig Clin Dent 5:283–288.  https://doi.org/10.1111/jicd.12058 CrossRefPubMedGoogle Scholar
  14. 14.
    Baroudi K, Rodrigues JC (2015) Flowable resin composites: a systematic review and clinical considerations. J Clin Diagn Res JCDR 9:ZE18–ZE24.  https://doi.org/10.7860/JCDR/2015/12294.6129 CrossRefPubMedGoogle Scholar
  15. 15.
    Baroudi K, Silikas N, Watts DC (2009) In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites. Int J Paediatr Dent 19:48–54.  https://doi.org/10.1111/j.1365-263X.2007.00899.x CrossRefPubMedGoogle Scholar
  16. 16.
    Koubi S, Raskin A, Dejou J, About I, Tassery H, Camps J, Proust JP (2009) Effect of dual cure composite as dentin substitute on marginal integrity of class II open-sandwich restorations. Oper Dent 34:150–156.  https://doi.org/10.2341/08-29 CrossRefPubMedGoogle Scholar
  17. 17.
    Roggendorf MJ, Krämer N, Dippold C, Vosen VE, Naumann M, Jablonski-Momeni A, Frankenberger R (2012) Effect of proximal box elevation with resin composite on marginal quality of resin composite inlays in vitro. J Dent 40:1068–1073.  https://doi.org/10.1016/j.jdent.2012.08.019 CrossRefPubMedGoogle Scholar
  18. 18.
    Heintze SD, Rousson V (2012) Clinical effectiveness of direct class II restorations - a meta-analysis. J Adhes Dent 14:407–431.  https://doi.org/10.3290/j.jad.a28390 CrossRefPubMedGoogle Scholar
  19. 19.
    Khoroushi M, Keshani F (2013) A review of glass-ionomers: from conventional glass-ionomer to bioactive glass-ionomer. Dent Res J (Isfahan) 10:411–420Google Scholar
  20. 20.
    Lazaridou D, Belli R, Krämer N, Petschelt A, Lohbauer U (2015) Dental materials for primary dentition: are they suitable for occlusal restorations? A two-body wear study. Eur Arch Paediatr Dent 16:165–172.  https://doi.org/10.1007/s40368-014-0151-y CrossRefPubMedGoogle Scholar
  21. 21.
    Gurgan S, Kutuk ZB, Ergin E, Oztas SS, Cakir FY (2015) Four-year randomized clinical trial to evaluate the clinical performance of a glass ionomer restorative system. Oper Dent 40:134–143.  https://doi.org/10.2341/13-239-C CrossRefPubMedGoogle Scholar
  22. 22.
    Fukegawa D, Hayakawa S, Yoshida Y, Suzuki K, Osaka A, Van Meerbeek B (2006) Chemical interaction of phosphoric acid ester with hydroxyapatite. J Dent Res 85:941–944.  https://doi.org/10.1177/154405910608501014 CrossRefPubMedGoogle Scholar
  23. 23.
    Kadoma Y (2002) Surface treatment agent for dental metals using a thiirane monomer and a phosphoric acid monomer. Dent Mater J 21:156–169.  https://doi.org/10.4012/dmj.21.156 CrossRefPubMedGoogle Scholar
  24. 24.
    Chen L, Suh BI, Brown D, Chen X (2012) Bonding of primed zirconia ceramics: evidence of chemical bonding and improved bond strengths. Am J Dent 25:103–108PubMedGoogle Scholar
  25. 25.
    Kim RJ, Woo JS, Lee IB, Yi YA, Hwang JY, Seo DG (2015) Performance of universal adhesives on bonding to leucite-reinforced ceramic. Biomater Res 19:11.  https://doi.org/10.1186/s40824-015-0035-1 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lee Y, Kim JH, Woo JS, Yi YA, Hwang JY, Seo DG (2015) Analysis of self-adhesive resin cement microshear bond strength on leucite-reinforced glass-ceramic with/without pure silane primer or universal adhesive surface treatment. Biomed Res Int 2015:361893.  https://doi.org/10.1155/2015/361893 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yoshida Y, Nagakane K, Fukuda R, Nakayama Y, Okazaki M, Shintani H, Inoue S, Tagawa Y, Suzuki K, De Munck J, Van Meerbeek B (2004) Comparative study on adhesive performance of functional monomers. J Dent Res 83:454–458.  https://doi.org/10.1177/154405910408300604 CrossRefPubMedGoogle Scholar
  28. 28.
    Çolak H, Tokay U, Uzgur R, Uzgur Z, Ercan E, Hamidi MM (2016) The effect of different adhesives and setting times on bond strength between Biodentine and composite. J Appl Biomater Funct Mater 14:e217–e222.  https://doi.org/10.5301/jabfm.5000266 CrossRefPubMedGoogle Scholar
  29. 29.
    Odabaş ME, Bani M, Tirali RE (2013) Shear bond strengths of different adhesive systems to biodentine. Sci World J 2013:626103–626105.  https://doi.org/10.1155/2013/626103 CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Burrow MF, Palamara JEA, Thomas CDL (2011) Bonding to glass ionomer cements using resin-based adhesives. Oper Dent 36:618–625.  https://doi.org/10.2341/10-140-L CrossRefPubMedGoogle Scholar
  31. 31.
    Wexler G, Beech DR (1988) Bonding of a composite restorative material to etched glass ionomer cement. Aust Dent J 33:313–318.  https://doi.org/10.1111/j.1834-7819.1988.tb04185.x CrossRefPubMedGoogle Scholar
  32. 32.
    Hinoura K, Moore BK, Phillips RW (1988) Tensile bond strength between glass ionomer cements and composite resins. J Am Dent Assoc 114:167–172.  https://doi.org/10.14219/jada.archive.1987.0021 CrossRefGoogle Scholar
  33. 33.
    Kandaswamy D, Rajan KJ, Venkateshbabu N, Porkodi I (2012) Shear bond strength evaluation of resin composite bonded to glass-ionomer cement using self-etching bonding agents with different pH: in vitro study. J Conserv Dent JCD 15:27–31.  https://doi.org/10.4103/0972-0707.92602 CrossRefPubMedGoogle Scholar
  34. 34.
    Nurrohman H, Nakashima S, Takagaki T, Sadr A, Nikaido T, Asakawa Y, Uo M, Marshall SJ, Tagami J (2015) Immobilization of phosphate monomers on collagen induces biomimetic mineralization. Biomed Mater Eng 25:89–99.  https://doi.org/10.3233/BME-141243 CrossRefPubMedGoogle Scholar
  35. 35.
    Shimazu K, Karibe H, Ogata K (2014) Effect of artificial saliva contamination on adhesion of dental restorative materials. Dent Mater J 33:545–550.  https://doi.org/10.4012/dmj.2014-007 CrossRefPubMedGoogle Scholar
  36. 36.
    Park J, Chang J, Ferracane J, Lee IB (2008) How should composite be layered to reduce shrinkage stress: incremental or bulk filling? Dent Mater 24:1501–1505.  https://doi.org/10.1016/j.dental.2008.03.013 CrossRefPubMedGoogle Scholar
  37. 37.
    Cebe MA, Cebe F, Cengiz MF, Cetin AR, Arpag OF, Ozturk B (2015) Elution of monomer from different bulk fill dental composite resins. Dent Mater 31:e141–e149.  https://doi.org/10.1016/j.dental.2015.04.008 CrossRefPubMedGoogle Scholar
  38. 38.
    Dursun E, Fron-Chabouis H, Attal JP, Raskin A (2016) Bisphenol a release: survey of the composition of dental composite resins. Open Dent J 10:446–453.  https://doi.org/10.2174/1874210601610010446 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sideridou ID, Achilias DS (2005) Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. J Biomed Mater Res B Appl Biomater 74:617–626.  https://doi.org/10.1002/jbm.b.30252 CrossRefPubMedGoogle Scholar
  40. 40.
    Calesini G, Micarelli C, Fabianelli A, Papacchini F (2014) The evaluation of marginal gap with and without optical aids: clinicians versus technicians. Int J Prosthodont 27:161–164.  https://doi.org/10.11607/ijp.3649 CrossRefPubMedGoogle Scholar
  41. 41.
    Mamoun J (2015) Preparing and restoring composite resin restorations. The advantage of high magnification loupes or the dental surgical operating microscope. N Y State Dent J 81:18–23PubMedGoogle Scholar
  42. 42.
    Magne P (2014) IDS: Immediate Dentin Sealing (IDS) for tooth preparations. J Adhes Dent 16:594.  https://doi.org/10.3290/j.jad.a33324 CrossRefPubMedGoogle Scholar
  43. 43.
    Panahandeh N, Torabzadeh H, Ghassemi A, Mahdian M, Akbarzadeh Bagheban A, Moayyedi S (2015) Effect of bonding application time on bond strength of composite resin to glass ionomer cement. J Dent (Tehran) 12:859–867Google Scholar
  44. 44.
    Beriat NC, Nalbant D (2009) Water absorption and HEMA release of resin-modified glass-ionomers. Eur J Dent 3:267–272PubMedPubMedCentralGoogle Scholar
  45. 45.
    Cattani-Lorente MA, Dupuis V, Payan J, Moya F, Meyer JM (1999) Effect of water on the physical properties of resin-modified glass ionomer cements. Dent Mater 15:71–78.  https://doi.org/10.1016/S0109-5641(99)00016-0 CrossRefGoogle Scholar
  46. 46.
    Karaoğlanoğlu S, Akgül N, Ozdabak HN, Akgül HM (2009) Effectiveness of surface protection for glass-ionomer, resin-modified glass-ionomer and polyacid-modified composite resins. Dent Mater J 28:96–101.  https://doi.org/10.4012/dmj.28.96 CrossRefPubMedGoogle Scholar
  47. 47.
    Gopikrishna V, Abarajithan M, Krithikadatta J, Kandaswamy D (2009) Shear bond strength evaluation of resin composite bonded to GIC using three different adhesives. Oper Dent 34:467–471.  https://doi.org/10.2341/08-009-L CrossRefPubMedGoogle Scholar
  48. 48.
    Tanumiharja M, Burrow MF, Tyas MJ (2000) Microtensile bond strengths of glass ionomer (polyalkenoate) cements to dentine using four conditioners. J Dent 28:361–366.  https://doi.org/10.1016/S0300-5712(00)00009-9 CrossRefPubMedGoogle Scholar
  49. 49.
    Knight GM, McIntyre JM, Mulyani (2006) Bond strengths between composite resin and auto cure glass ionomer cement using the co-cure technique. Aust Dent J 51:175–179.  https://doi.org/10.1111/j.1834-7819.2006.tb00423.x CrossRefPubMedGoogle Scholar
  50. 50.
    Coutinho E, Yoshida Y, Inoue S, Fukuda R, Snauwaert J, Nakayama Y, De Munck J, Lambrechts P, Suzuki K, Van Meerbeek B (2007) Gel phase formation at resin-modified glass-ionomer/tooth interfaces. J Dent Res 86:656–661.  https://doi.org/10.1177/154405910708600714 CrossRefPubMedGoogle Scholar
  51. 51.
    Tay KCY, Loushine BA, Oxford C, Kapur R, Primus CM, Gutmann JL, Loushine RJ, Pashley DH, Tay FR (2007) In vitro evaluation of a Ceramicrete-based root-end filling material. J Endod 33:1438–1443.  https://doi.org/10.1016/j.joen.2007.07.038 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Dental Surgery, Dental Materials Research Unit (URB2I)Paris Descartes UniversityMontrougeFrance
  2. 2.Bretonneau Hospital75018 ParisFrance
  3. 3.CentraleSupélecUniversité Paris-Saclay, FranceGif sur YvetteFrance
  4. 4.Charles Foix Hospital94200 Ivry-sur-SeineFrance
  5. 5.Albert Chenevier Hospital94000 CréteilFrance

Personalised recommendations