Stress distribution in mandibular donor site after harvesting bone grafts of various sizes from the ascending ramus of a dentate mandible by finite element analysis

  • Stephan Christian MöhlhenrichEmail author
  • Kristian Kniha
  • József Szalma
  • Nassim Ayoub
  • Frank Hölzle
  • Michael Wolf
  • Ali Modabber
  • Stefan Raith
Original Article



Harvesting bone from the ascending ramus of the mandible is a common procedure. However, mandibular fracture may occur after grafting bone blocks. This study aimed to investigate the resulting force distribution of stress and strain in the mandibular donor site after harvesting bone grafts of different sizes and various loadings.


Finite element analysis was performed for virtual harvesting of bone blocks of nine different sizes between 15 × 20 and 25 × 30 mm and three different chewing loads (incisal, ipsilateral and contralateral). von Mises stress and first principal stress distributions were measured.


von Mises stress was distributed between 35.01 (10 × 15 mm graft, incisal load) and 333.25 MPa (30 × 20 mm graft ipsilateral load), whereas first principal stress distributions were between 48.27 (10 × 15 mm graft, incisal load) and 414.69 MPa (30 × 20 mm graft ipsilateral load). In general, the least stress was observed with incisal load followed by ipsilateral load and finally contralateral load. The critical value of 133 MPa was found after removing almost all grafts with a width of 20 or 30 mm.


Incisal loading led to less stress compared with contralateral and ipsilateral loads. Increasing graft size led to increasing weakness of the donor site. Graft width exerted a greater influence on stress development than its height.

Clinical relevance

Ipsilateral chewing and increasing width of the bone graft result in maximum stress in the mandibular donor side, and critical values regarding to the possibility of fractures are already to expect from a graft size of 20 × 15 mm.


Mandibular donor site Dentate mandible Finite element analysis Chewing load Stress distribution 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.


The authors do not have any financial interests or commercial associations to disclose.


  1. 1.
    Simion M, Fontana F (2004) Autogenous and xenogeneic bone grafts for the bone regeneration. A literature review. Minerva Stomatol 53:191–206PubMedGoogle Scholar
  2. 2.
    Misch CM, Misch CE, Resnik RR, Ismail YH (1992) Reconstruction of maxillary alveolar defects with mandibular symphysis grafts for dental implants: a preliminary procedural report. Int J Oral Maxillofac Implants 27:360–366Google Scholar
  3. 3.
    Khoury F, Buchmann R (2001) Surgical therapy of peri-implant disease: a 3-year follow-up study of cases treated with 3 different techniques of bone regeneration. J Periodontol 72:1498–1508CrossRefGoogle Scholar
  4. 4.
    Misch CM (1997) Comparison of intraoral donor sites for onlay grafting prior to implant placement. Int J Oral Maxillofac Implants 12:767–776PubMedGoogle Scholar
  5. 5.
    Jensen J, Sindet-Pedersen S (1991) Autogenous mandibular bone grafts and osseointegrated implants for reconstruction of the severely atrophied maxilla: a preliminary report. J Oral Maxillofac Surg 49:1277–1287CrossRefGoogle Scholar
  6. 6.
    Khoury F (1999) Augmentation of the sinus floor with mandibular bone block and simultaneous implantation: a 6-year clinical investigation. Int J Oral Maxillofac Implants 14:557–564PubMedGoogle Scholar
  7. 7.
    Misch CM (2000) Use of the mandibular ramus as a donor site for onlay bone grafting. J Oral Implantol 26:42–49CrossRefGoogle Scholar
  8. 8.
    Ellis E 3rd, Moos KF, el-Attar A (1985) Ten years of mandibular fractures: an analysis of 2,137 cases. Oral Surg Oral Med Oral Pathol 59:120–129CrossRefGoogle Scholar
  9. 9.
    Ahlers E, Setabutr D, Garritano F, Adil E, McGinn J (2013) Pathologic fracture of the mandible secondary to traumatic bone cyst. Craniomaxillofac Trauma Reconstr 6:201–204CrossRefGoogle Scholar
  10. 10.
    Chrcanovic BR, Custodio AL (2010) Considerations of mandibular angle fractures during and after surgery for removal of third molars: a review of the literature. Oral Maxillofac Surg 14:71–80CrossRefGoogle Scholar
  11. 11.
    Kwon IJ, Lee BH, Eo MY, Kim SM, Lee JH, Lee SK (2016) Pathologic mandibular fracture after biting crab shells following ramal bone graft. Dent Traumatol 32:421–424CrossRefGoogle Scholar
  12. 12.
    Murakami K, Yamamoto K, Tsuyuki M, Sugiura T, Tsutsumi S, Kirita T (2014) Theoretical efficacy of preventive measures for pathologic fracture after surgical removal of mandibular lesions based on a three-dimensional finite element analysis. J Oral Maxillofac Surg 72:833.e1–833.18CrossRefGoogle Scholar
  13. 13.
    Ertem SY, Uckan S, Ozden UA (2013) The comparison of angular and curvilinear marginal mandibulectomy on force distribution with three dimensional finite element analysis. J Craniomaxillofac Surg 41:e54–e58CrossRefGoogle Scholar
  14. 14.
    Antic S, Vukicevic AM, Milasinovic M, Saveljic I, Jovicic G, Filipovic N, Rakocevic Z, Djuric M (2015) Impact of the lower third molar presence and position on the fragility of mandibular angle and condyle: a three-dimensional finite element study. J Craniomaxillofac Surg 43:870–878CrossRefGoogle Scholar
  15. 15.
    Kan B, Coskunses FM, Mutlu I, Ugur L, Meral DG (2015) Effects of inter-implant distance and implant length on the response to frontal traumatic force of two anterior implants in an atrophic mandible: three-dimensional finite element analysis. Int J Oral Maxillofac Surg 44:908–913CrossRefGoogle Scholar
  16. 16.
    Vieira EOTR, Kemmoku DT, da Silva JVL, Noritomi PY, Passeri LA (2017) Finite element evaluation of stable fixation in combined mandibular fractures. J Oral Maxillofac Surg 75:2399–2410CrossRefGoogle Scholar
  17. 17.
    Möhlhenrich SC, Heussen N, Ayoub N, Hölzle F, Modabber A (2015) Three-dimensional evaluation of the different donor sites of the mandible for autologous bone grafts. Clin Oral Investig 19:453–458CrossRefGoogle Scholar
  18. 18.
    Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H (2002) Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 18:357–368Google Scholar
  19. 19.
    Geng JP, Ma QS, Xu W, Tan KB, Liu GR (2014) Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil 31:233–239CrossRefGoogle Scholar
  20. 20.
    Himmlova L, Dostalova T, Kacovsky A, Konvickova S (2004) Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent 91:20–25CrossRefGoogle Scholar
  21. 21.
    Deguchi T, Nasu M, Murakami K, Yabuuchi T, Kamioka H, Takano-Yamamoto T (2006) Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am J Orthod Dentofac Orthop 129(721):e727–e712Google Scholar
  22. 22.
    Erkmen E, Simsek B, Yucel E, Kurt A (2005) Three-dimensional finite element analysis used to compare methods of fixation after sagittal split ramus osteotomy: setback surgery-posterior loading. Br J Oral Maxillofac Surg 43:97–104CrossRefGoogle Scholar
  23. 23.
    Korioth TW, Hannam AG (1994) Deformation of the human mandible during simulated tooth clenching. J Dent Res 73:56–66CrossRefGoogle Scholar
  24. 24.
    Scheerlinck LM, Muradin MS, van der Bilt A, Meijer GJ, Koole R, Van Cann EM (2013) Donor site complications in bone grafting: comparison of iliac crest, calvarial, and mandibular ramus bone. Int J Oral Maxillofac Implants 28:222–227CrossRefGoogle Scholar
  25. 25.
    Schwartz-Dabney CL, Dechow PC (2003) Variations in cortical material properties throughout the human dentate mandible. Am J Phys Anthropol 120:252–277CrossRefGoogle Scholar
  26. 26.
    Koolstra JH (2002) Dynamics of the human masticatory system. Crit Rev Oral Biol Med 13:366–376CrossRefGoogle Scholar
  27. 27.
    Rues S, Lenz J, Turp JC, Schweizerhof K, Schindler HJ (2008) Forces and motor control mechanisms during biting in a realistically balanced experimental occlusion. Arch Oral Biol 53:1119–1128CrossRefGoogle Scholar
  28. 28.
    Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8:393–405CrossRefGoogle Scholar
  29. 29.
    Frost HM (2003) Bone's mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275:1081–1101CrossRefGoogle Scholar
  30. 30.
    Standlee JP, Caputo AA, Ralph JP (1977) Stress trajectories within the mandible under occlusal loads. J Dent Res 56:1297–1302CrossRefGoogle Scholar
  31. 31.
    Iizuka T, Tanner S, Berthold H (1997) Mandibular fractures following third molar extraction. A retrospective clinical and radiological study. Int J Oral Maxillofac Surg 26:338–343CrossRefGoogle Scholar
  32. 32.
    Streckbein P, Kahling C, Wilbrand JF, Malik CY, Schaaf H, Howaldt HP, Streckbein R (2014) Horizontal alveolar ridge augmentation using autologous press fit bone cylinders and micro-lag-screw fixation: technical note and initial experience. J Craniomaxillofac Surg 42:387–391CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Stephan Christian Möhlhenrich
    • 1
    • 2
    Email author
  • Kristian Kniha
    • 2
  • József Szalma
    • 3
  • Nassim Ayoub
    • 2
  • Frank Hölzle
    • 2
  • Michael Wolf
    • 1
  • Ali Modabber
    • 2
  • Stefan Raith
    • 2
  1. 1.Department of Orthodontics and Dentofacial OrthopedicsRWTH Aachen University HospitalAachenGermany
  2. 2.Department of Oral and Maxillofacial SurgeryUniversity Hospital of AachenAachenGermany
  3. 3.Department of Oral and Maxillofacial SurgeryUniversity of PecsPecsHungary

Personalised recommendations