Advertisement

Comparative effect of platelet-rich plasma, platelet-poor plasma, and fetal bovine serum on the proliferative response of periodontal ligament cell subpopulations

  • Constanza E. Martínez
  • Roberto Gómez
  • Alexis M. Kalergis
  • Patricio C. Smith
Original Article
  • 124 Downloads

Abstract

Objectives

Cell-based therapies involve the need to expand cell cultures ex vivo for their subsequent implantation in an autologous manner. An important limitation regarding this technology is the use of fetal bovine serum (FBS) that has critical safety limitations. Platelet-derived fractions represent an autologous source of growth factors that may be used for the expansion of these cell cultures. Periodontal ligament (PDL) cells comprise a heterogeneous cell population that may not necessarily respond in a uniform manner to proliferative stimuli. The aim of this study was to evaluate the ability of two platelet-derived fractions, platelet-rich plasma (PRP) and platelet-poor plasma (PPP) and FBS on the proliferative response of different subpopulations of PDL cell cultures.

Materials and methods

PDL cells were characterized and then exposed to PRP, PPP, or FBS during 2, 5, or 14 days to analyze cell proliferation and clonogenic capability. Cell proliferation was evaluated through immunofluorescence for Ki67 and by tracing carboxyfluorescein diacetate succinimidyl ester (CFSE) dye in combination with mesenchymal stem cell markers using flow cytometry.

Results

Both PRP and PPP stimulated PDL cell proliferation and their clonogenic ability. We found a significant increase of CD73- and CD90-positive cells after PRP or PPP treatment, compared to FBS. Otherwise, no differences were found regarding the response of CD146-or CD105-positive cells when stimulated with PRP, PPP, or FBS.

Conclusion

PRP and PPP can stimulate the proliferation and clonogenicity of PDL cell populations including cells positive for CD90 and CD73 markers.

Clinical relevance

These findings may have implications for future therapies aiming to stimulate periodontal regeneration using autologous growth factors.

Keywords

Platelet-rich plasma Periodontal ligament Mesenchymal stem cells Serum-free culture media 

Notes

Acknowledgements

This work was supported by the projects FONDECYT 11121294, PUENTE P1704/2017 (CM), and FONDECYT 1130618 (PS) Millennium Institute on Immunology and Immunotherapy (P09/016-F, to AK). The flow cytometry experiments were performed at the Flow Cytometry Core Facility, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile. We acknowledge the contribution of tissue and blood donors.

The selected hybridoma monoclonal antibodies were PD31, developed by Elizabeth A. Wayner and Gregory Vercellotti and P8B1 by Elizabeth A. Wayner/Tucker LeBien, from the Fred Hutchinson Cancer Research Center, Seattle, WA. These antibodies were obtained from the Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and maintained at The University of Iowa, Department of Biology, Iowa City, IA, 52242.

Funding

The work was supported by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) from the Chilean Government and Puente research grant by Pontificia Universidad Católica de Chile.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving samples from human participants were in accordance with the ethical standards of the Faculty of Medicine Ethical Committee at Pontificia Universidad Católica de Chile and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Seo BM, Song IS, Um S, Lee J-H (2015) Chapter 22 periodontal ligament stem cells. Stem cell biology and tissue engineering in dental sciences. Academic Press.  https://doi.org/10.1016/B978-0-12-397157-9.00024-2 CrossRefGoogle Scholar
  2. 2.
    Feng F, Akiyama K, Liu Y, Yamaza T, Wang TM, Chen JH, Wang BB, Huang GT, Wang S, Shi S (2010) Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis 16:20–28CrossRefGoogle Scholar
  3. 3.
    Bright R, Hynes K, Gronthos S, Bartold PM (2015) Periodontal ligament-derived cells for periodontal regeneration in animal models: a systematic review. J Periodontal Res 50:160–172.  https://doi.org/10.1111/jre.12205 CrossRefPubMedGoogle Scholar
  4. 4.
    Bin Z, Yihan L, Dehua L, Yan J (2013) Somatic stem cell biology and periodontal regeneration. Int J Oral Maxillofac Implants 28:e494–e502.  https://doi.org/10.11607/jomi.te30 CrossRefGoogle Scholar
  5. 5.
    Han J, Menicanin D, Gronthos S, Bartold PM (2014) Stem cells, tissue engineering and periodontal regeneration. Aust Dent J 59 Suppl 1:117–130.  https://doi.org/10.1111/adj.12100 CrossRefPubMedGoogle Scholar
  6. 6.
    Mrozik K, Gronthos S, Shi S, Bartold PM (2010) A method to isolate, purify, and characterize human periodontal ligament stem cells. Methods Mol Biol 666:269–284.  https://doi.org/10.1007/978-1-60761-820-1_17 CrossRefPubMedGoogle Scholar
  7. 7.
    Shih DT, Burnouf T (2015) Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion. New Biotechnol 32:199–211.  https://doi.org/10.1016/j.nbt.2014.06.001 CrossRefGoogle Scholar
  8. 8.
    Mackensen A, Drager R, Schlesier M, Mertelsmann R, Lindemann A (2000) Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol Immunother 49:152–156CrossRefGoogle Scholar
  9. 9.
    Karnieli O, Friedner OM, Allickson JG, Zhang N, Jung S, Fiorentini D, Abraham E, Eaker SS, Yong TK, Chan A, Griffiths S, Wehn AK, Oh S, Karnieli O (2017) A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy 19:155–169.  https://doi.org/10.1016/j.jcyt.2016.11.011 CrossRefPubMedGoogle Scholar
  10. 10.
    van der Valk J, Mellor D, Brands R, Fischer R, Gruber F, Gstraunthaler G, Hellebrekers L, Hyllner J, Jonker FH, Prieto P, Thalen M, Baumans V (2004) The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture. Toxicol in Vitro 18:1–12CrossRefGoogle Scholar
  11. 11.
    Trubiani O, Piattelli A, Gatta V, Marchisio M, Diomede F, D'Aurora M, Merciaro I, Pierdomenico L, Maraldi NM, Zini N (2015) Assessment of an efficient xeno-free culture system of human periodontal ligament stem cells. Tissue Eng Part C Methods 21:52–64.  https://doi.org/10.1089/ten.TEC.2014.0024 CrossRefPubMedGoogle Scholar
  12. 12.
    Hemeda H, Giebel B, Wagner W (2014) Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy 16:170–180.  https://doi.org/10.1016/j.jcyt.2013.11.004 CrossRefPubMedGoogle Scholar
  13. 13.
    Eaker S, Armant M, Brandwein H, Burger S, Campbell A, Carpenito C, Clarke D, Fong T, Karnieli O, Niss K, Van’t Hof W, Wagey R (2013) Concise review: guidance in developing commercializable autologous/patient-specific cell therapy manufacturing. Stem Cells Transl Med 2:871–883.  https://doi.org/10.5966/sctm.2013-0050 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bieback K (2013) Platelet lysate as replacement for fetal bovine serum in mesenchymal stromal cell cultures. Transfus Med Hemother 40:326–335.  https://doi.org/10.1159/000354061 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dessels C, Potgieter M, Pepper MS (2016) Making the switch: alternatives to fetal bovine serum for adipose-derived stromal cell expansion. Front Cell Dev Biol 4:115.  https://doi.org/10.3389/fcell.2016.00115 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Diez JM, Bauman E, Gajardo R, Jorquera JI (2015) Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools. Stem Cell Res Ther 6:28.  https://doi.org/10.1186/s13287-015-0016-2 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wu RX, Yu Y, Yin Y, Zhang XY, Gao LN, Chen FM (2016) Platelet lysate supports the in vitro expansion of human periodontal ligament stem cells for cytotherapeutic use. J Tissue Eng Regen Med 11:2261–2275.  https://doi.org/10.1002/term.2124 CrossRefPubMedGoogle Scholar
  18. 18.
    Thushara RM, Hemshekhar M, Basappa KK, Rangappa KS, Girish KS (2015) Biologicals, platelet apoptosis and human diseases: an outlook. Crit Rev Oncol Hematol 93:149–158.  https://doi.org/10.1016/j.critrevonc.2014.11.002 CrossRefPubMedGoogle Scholar
  19. 19.
    Caceres M, Martinez C, Martinez J, Smith PC (2012) Effects of platelet-rich and -poor plasma on the reparative response of gingival fibroblasts. Clin Oral Implants Res 23:1104–1111.  https://doi.org/10.1111/j.1600-0501.2011.02274.x CrossRefPubMedGoogle Scholar
  20. 20.
    Martinez CE, Smith PC, Palma Alvarado VA (2015) The influence of platelet-derived products on angiogenesis and tissue repair: a concise update. Front Physiol 6:290.  https://doi.org/10.3389/fphys.2015.00290 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    De Pascale MR, Sommese L, Casamassimi A, Napoli C (2015) Platelet derivatives in regenerative medicine: an update. Transfus Med Rev 29:52–61.  https://doi.org/10.1016/j.tmrv.2014.11.001 CrossRefPubMedGoogle Scholar
  22. 22.
    Mautner K, Malanga GA, Smith J, Shiple B, Ibrahim V, Sampson S, Bowen JE (2015) A call for a standard classification system for future biologic research: the rationale for new PRP nomenclature. PM R 7:S53–S59.  https://doi.org/10.1016/j.pmrj.2015.02.005 CrossRefPubMedGoogle Scholar
  23. 23.
    Martinez CE, Gonzalez SA, Palma V, Smith PC (2016) Platelet-poor and platelet-rich plasma stimulate bone lineage differentiation in periodontal ligament stem cells. J Periodontol 87:e18–e26.  https://doi.org/10.1902/jop.2015.150360 CrossRefPubMedGoogle Scholar
  24. 24.
    Martinez C, Smith PC, Rodriguez JP, Palma V (2011) Sonic hedgehog stimulates proliferation of human periodontal ligament stem cells. J Dent Res 90:483–488.  https://doi.org/10.1177/0022034510391797 CrossRefPubMedGoogle Scholar
  25. 25.
    Magalon J, Bausset O, Serratrice N, Giraudo L, Aboudou H, Veran J, Magalon G, Dignat-Georges F, Sabatier F (2014) Characterization and comparison of 5 platelet-rich plasma preparations in a single-donor model. Arthroscopy 30:629–638.  https://doi.org/10.1016/j.arthro.2014.02.020 CrossRefPubMedGoogle Scholar
  26. 26.
    Wang H, Zhao Z, Lin M, Groban L (2015) Activation of GPR30 inhibits cardiac fibroblast proliferation. Mol Cell Biochem 405:135–148.  https://doi.org/10.1007/s11010-015-2405-3 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275–281CrossRefGoogle Scholar
  28. 28.
    Jin SH, Lee JE, Yun JH, Kim I, Ko Y, Park JB (2015) Isolation and characterization of human mesenchymal stem cells from gingival connective tissue. J Periodontal Res 50:461–467.  https://doi.org/10.1111/jre.12228 CrossRefPubMedGoogle Scholar
  29. 29.
    Ochoa-Gonzalez F, Cervantes-Villagrana AR, Fernandez-Ruiz JC, Nava-Ramirez HS, Hernandez-Correa AC, Enciso-Moreno JA, Castaneda-Delgado JE (2016) Metformin induces cell cycle arrest, reduced proliferation, wound healing impairment in vivo and is associated to clinical outcomes in diabetic foot ulcer patients. PLoS One 11:e0150900.  https://doi.org/10.1371/journal.pone.0150900 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Oikonomopoulos A, van Deen WK, Manansala AR, Lacey PN, Tomakili TA, Ziman A, Hommes DW (2015) Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media. Sci Rep 5:16570.  https://doi.org/10.1038/srep16570 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bartold PM, McCulloch CA, Narayanan AS, Pitaru S (2000) Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000 24:253–269CrossRefGoogle Scholar
  32. 32.
    Zhu W, Liang M (2015) Periodontal ligament stem cells: current status, concerns, and future prospects. Stem Cells Int 2015:972313–972311.  https://doi.org/10.1155/2015/972313 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317.  https://doi.org/10.1080/14653240600855905 CrossRefGoogle Scholar
  34. 34.
    Bartold PM, Gronthos S (2017) Standardization of criteria defining periodontal ligament stem cells. J Dent Res 96:487–490.  https://doi.org/10.1177/0022034517697653 CrossRefPubMedGoogle Scholar
  35. 35.
    Xiong J, Menicanin D, Zilm PS, Marino V, Bartold PM, Gronthos S (2016) Investigation of the cell surface proteome of human periodontal ligament stem cells. Stem Cells Int 2016:1947157–1947113.  https://doi.org/10.1155/2016/1947157 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Han J, Menicanin D, Marino V, Ge S, Mrozik K, Gronthos S, Bartold PM (2014) Assessment of the regenerative potential of allogeneic periodontal ligament stem cells in a rodent periodontal defect model. J Periodontal Res 49:333–345.  https://doi.org/10.1111/jre.12111 CrossRefPubMedGoogle Scholar
  37. 37.
    Zhu W, Tan Y, Qiu Q, Li X, Huang Z, Fu Y, Liang M (2013) Comparison of the properties of human CD146+ and CD146- periodontal ligament cells in response to stimulation with tumour necrosis factor alpha. Arch Oral Biol 58:1791–1803.  https://doi.org/10.1016/j.archoralbio.2013.09.012 CrossRefPubMedGoogle Scholar
  38. 38.
    Liu J, Yu F, Sun Y, Jiang B, Zhang W, Yang J, Xu GT, Liang A, Liu S (2015) Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells 33:627–638.  https://doi.org/10.1002/stem.1909 CrossRefPubMedGoogle Scholar
  39. 39.
    Yang ZX, Han ZB, Ji YR, Wang YW, Liang L, Chi Y, Yang SG, Li LN, Luo WF, Li JP, Chen DD, Du WJ, Cao XC, Zhuo GS, Wang T, Han ZC (2013) CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One 8:e59354.  https://doi.org/10.1371/journal.pone.0059354 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Antonioli L, Pacher P, Vizi ES, Hasko G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19:355–367.  https://doi.org/10.1016/j.molmed.2013.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Moraes DA, Sibov TT, Pavon LF, Alvim PQ, Bonadio RS, Da Silva JR, Pic-Taylor A, Toledo OA, Marti LC, Azevedo RB, Oliveira DM (2016) A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells. Stem Cell Res Ther 7:97.  https://doi.org/10.1186/s13287-016-0359-3 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Anderson P, Carrillo-Galvez AB, Garcia-Perez A, Cobo M, Martin F (2013) CD105 (endoglin)-negative murine mesenchymal stromal cells define a new multipotent subpopulation with distinct differentiation and immunomodulatory capacities. PLoS One 8:e76979.  https://doi.org/10.1371/journal.pone.0076979 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Harkness L, Zaher W, Ditzel N, Isa A, Kassem M (2016) CD146/MCAM defines functionality of human bone marrow stromal stem cell populations. Stem Cell Res Ther 7:4.  https://doi.org/10.1186/s13287-015-0266-z CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mo M, Wang S, Zhou Y, Li H, Wu Y (2016) Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential. Cell Mol Life Sci 73:3311–3321.  https://doi.org/10.1007/s00018-016-2229-7 CrossRefPubMedGoogle Scholar
  45. 45.
    Amable PR, Carias RB, Teixeira MV, da Cruz Pacheco I, Correa do Amaral RJ, Granjeiro JM, Borojevic R (2013) Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res Ther 4:67.  https://doi.org/10.1186/scrt218 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kaigler D, Avila G, Wisner-Lynch L, Nevins ML, Nevins M, Rasperini G, Lynch SE, Giannobile WV (2011) Platelet-derived growth factor applications in periodontal and peri-implant bone regeneration. Expert Opin Biol Ther 11:375–385.  https://doi.org/10.1517/14712598.2011.554814 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Smith PCM, Cáceres M, Martínez J (2015) Ressearch growth factors in periodontology. Periodontol 2000 67:234–250CrossRefGoogle Scholar
  48. 48.
    Cochran DL, Oh TJ, Mills MP, Clem DS, McClain PK, Schallhorn RA, McGuire MK, Scheyer ET, Giannobile WV, Reddy MS, Abou-Arraj RV, Vassilopoulos PJ, Genco RJ, Geurs NC, Takemura A (2016) A randomized clinical trial evaluating rh-FGF-2/beta-TCP in periodontal defects. J Dent Res 95:523–530.  https://doi.org/10.1177/0022034516632497 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Dentistry, Facultad de MedicinaPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Departamento de Endocrinología, Facultad de MedicinaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations