Clinical Oral Investigations

, Volume 23, Issue 3, pp 1383–1396 | Cite as

Effects of non-thermal atmospheric plasma treatment on dentin wetting and surface free energy for application of universal adhesives

  • Jovana N. Stasic
  • Nenad Selaković
  • Nevena Puač
  • Maja Miletić
  • Gordana Malović
  • Zoran Lj. Petrović
  • Djordje N. Veljovic
  • Vesna MileticEmail author
Original Article



The study aims to evaluate the effects of non-thermal atmospheric plasma (NTAP) treatments on dentin wetting and surface free energy (SFE) and compare the effects of NTAP treatment, etch-and-rinse, and self-etch protocols for application of universal adhesives.

Materials and methods

Mid-coronal dentin of intact third molars was used to measure contact angles of distilled water, ethylene-glycol, and diiodomethane and calculate SFE following different NTAP preset treatments (feeding gas consisting of pure He, He + 1% O2, He + 1.5% O2), power input (1 or 3 W), and tip-to-surface distance (2, 4, or 8 mm). Contact angles of reference liquids and SFE of dentin following He + 1.5% O2 at 3-W and 4-mm treatment was compared to phosphoric acid etching. Contact angles of Single Bond Universal (SBU; 3M ESPE) and Clearfil Universal Bond (CUB; Kuraray Noritake) were measured following NTAP, etch-and-rinse, and self-etch protocols.


NTAP significantly reduced contact angles of reference liquids and increased dentin SFE compared to untreated dentin (p < 0.05). O2 intensified the effect of He NTAP (p < 0.05). NTAP and phosphoric acid increased dentin polarity and Lewis base surface characteristics. Phosphoric acid increased contact angles of adhesives compared to the self-etch protocol (p < 0.05). NTAP resulted in lower adhesive contact angles than phosphoric acid, the difference being statistically significant for CUB (p < 0.05). Compared to the self-etch protocol, NTAP slightly reduced CUB contact angle but not that of SBU (p > 0.05).


He NTAP with and without O2 increased dentin wetting and SFE, surpassing the effect of phosphoric acid and lowering adhesive contact angles. NTAP produced no apparent micro-morphological changes on dentin surface comparable to acid etching.

Clinical significance

NTAP treatment of dentin prior to adhesive application increases dentin wetting and surface free energy facilitating better adhesive distribution on dentin surface compared to phosphoric acid etching and similar to the “self-etch” application protocol.


Contact angle Dentin Non-thermal atmospheric plasma Surface free energy Universal adhesive Wetting 



This work was supported by the Ministry of Education, Science, and Technological Development, Republic of Serbia (grant numbers III41011, ON171037, and ON172007). The authors wish to thank 3M ESPE and Kuraray Noritake for a generous donation of materials used in this study. We would like to thank Dr. Djordje Antonijević for his assistance with SFE calculation.


The work was supported by the Ministry of Education, Science, and Technological Development, Republic of Serbia (grant numbers III41011, ON171037, and ON172007).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.


  1. 1.
    Pashley DH, Tay FR, Breschi L, Tjäderhane L, Carvalho RM, Carrilho M, Tezvergil-Mutluay A (2011) State of the art etch-and-rinse adhesives. Dent Mater 27:1–16. CrossRefGoogle Scholar
  2. 2.
    Van Meerbeek B, Yoshihara K, Yoshida Y, Mine A, De Munck J, Van Landuyt KL (2011) State of the art of self-etch adhesives. Dent Mater 27:17–28. CrossRefGoogle Scholar
  3. 3.
    Rosa WL, Piva E, Silva AF (2015) Bond strength of universal adhesives: a systematic review and meta-analysis. J Dent 43:765–776. CrossRefGoogle Scholar
  4. 4.
    Zhang ZY, Tian FC, Niu LN, Ochala K, Chen C, Fu BP, Wang XY, Pashley DH, Tay FR (2016) Defying ageing: an expectation for dentine bonding with universal adhesives? J Dent 45:43–52. CrossRefGoogle Scholar
  5. 5.
    Attal JP, Asmussen E, Degrange M (1994) Effects of surface treatment on the free surface energy of dentin. Dent Mater 10:259–264. CrossRefGoogle Scholar
  6. 6.
    Rosales JI, Marshall GW, Marshall SJ, Watanabe LG, Toledano M, Cabrerizo MA, Osorio R (1999) Acid-etching and hydration influence on dentin roughness and wettability. J Dent Res 78:1554–1559. CrossRefGoogle Scholar
  7. 7.
    Toledano M, Osorio R, Perdigao J, Rosales JI, Thompson JY, Cabrerizo-Vilchez MA (1999) Effect of acid etching and collagen removal on dentin wettability and roughness. J Biomed Mater Res 47:198–203.<198::AID-JBM9>3.0.CO;2-L CrossRefGoogle Scholar
  8. 8.
    Makabe T, Petrovic ZLJ (2001) Plasma electronic, second editor: application in microelectronic device. CRC Press, Taylor and Francis Group, Boca RatonGoogle Scholar
  9. 9.
    Adamovich I, Baalrud SD, Bogaerts A, Bruggeman PJ, Cappelli M, Colombo V, Czarnetzki U, Ebert U, Eden JG, Favia P, Graves DB, Hamaguchi S, Hieftje G, Hori M, Kaganovich ID, Kortshagen U, Kushner MJ, Mason NJ, Mazouffre S, Mededovic Thagard S, Metelmann H-R, Mizuno A, Moreau E, Murphy AB, Niemira BA, Oehrlein GS, Petrovic ZL, Pitchford LC, Pu Y-K, Rauf S, Sakai O, Samukawa S, Starikovskaia S, Tennyson J, Terashima K, Turner MM, Van de Sanden MCM, Vardelle A (2017) The 2017 plasma roadmap: low temperature plasma science and technology. J Phys D Appl Phys 50:323001. CrossRefGoogle Scholar
  10. 10.
    Abe H, Yoneda M, Fujiwara N (2008) Developments of plasma etching technology for fabricating semiconductor devices. Jpn J Appl Phys 47:1435–1455. CrossRefGoogle Scholar
  11. 11.
    Chen FF (1995) Industrial applications of low-temperature plasma physics. Phys Plasmas 2:2164–2175. CrossRefGoogle Scholar
  12. 12.
    Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB, Hofman-Caris RCHM, Maric D, Reid JP, Ceriani E, Fernandez Rivas D, Foster JE, Garrick SC, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Mededovic Thagard S, Minakata D, Neyts EC, Pawlat J, Petrovic ZL, Pflieger R, Reuter S, Schram DC, Schröter S, Shiraiwa M, Tarabová B, Tsai PA, Verlet JRR, Von Woedtke T, Wilson KR, Yasui K, Zvereva G (2016) Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25:053002. CrossRefGoogle Scholar
  13. 13.
    Stoffels E, Kieft IE, Sladek REJ, Van den Bedem LJM, Van der Laan EP, Steinbuch M (2006) Plasma needle for in vivo medical treatment: recent developments and perspectives. Plasma Sources Sci Technol 15:S169–S180. CrossRefGoogle Scholar
  14. 14.
    Von Woedtke T, Reuter S, Masur K, Weltmann KD (2013) Plasmas for medicine. Phys Rep 530:291–320. CrossRefGoogle Scholar
  15. 15.
    Puač N, Živković S, Selaković N, Milutinović M, Boljević J, Malović G, Petrović ZL (2014) Long and short term effects of plasma treatment on meristematic plant cells. Appl Phys Lett 104:214106. CrossRefGoogle Scholar
  16. 16.
    Miletić M, Mojsilović S, Okić Đorđević I, Maletić D, Puač N, Lazović S, Malović G, Milenković P, Petrović ZL, Bugarski D (2013) Effects of non-thermal atmospheric plasma on human periodontal ligament mesenchymal stem cells. J Phys D Appl Phys 46:345401. CrossRefGoogle Scholar
  17. 17.
    Lazović S, Puač N, Miletić M, Pavlica D, Jovanović M, Bugarski D, Mojsilović S, Maletić D, Malović G, Milenković P, Petrović Z (2010) The effect of a plasma needle on bacteria in planktonic samples and on peripheral blood mesenchymal stem cells. New J Phys 12:083037. CrossRefGoogle Scholar
  18. 18.
    Miletić M, Vuković D, Živanović I, Dakić I, Soldatović I, Maletić D, Lazović S, Malović G, Petrović ZL, Puač N (2014) Inhibition of methicillin resistant Staphylococcus aureus by a plasma needle. Centr Eur J Phys 12:160–167. Google Scholar
  19. 19.
    Puač N, Miletić M, Mojović M, Popović-Bijelić A, Vuković D, Miličić B, Maletić D, Lazović S, Malović G, Petrović ZL (2015) Sterilization of bacteria suspensions and identification of radicals deposited during plasma treatment. Open Chem 13:332–338. Google Scholar
  20. 20.
    Lazović S, Maletić D, Leskovac A, Filipović J, Puač N, Malović G, Joksić G, Petrović ZL (2014) Plasma induced DNA damage: comparison with the effects of ionizing radiation. Appl Phys Lett 105:124101. CrossRefGoogle Scholar
  21. 21.
    Liu Y, Liu Q, Yu QS, Wang Y (2016) Nonthermal atmospheric plasmas in dental restoration. J Dent Res 95:496–505. CrossRefGoogle Scholar
  22. 22.
    Chen M, Zhang Y, Sky Driver M, Caruso AN, Yu Q, Wang Y (2013) Surface modification of several dental substrates by non-thermal, atmospheric plasma brush. Dent Mater 29:871–880. CrossRefGoogle Scholar
  23. 23.
    Han GJ, Kim JH, Chung SN, Chun BH, Kim CK, Seo DG, Son HH, Cho BH (2014) Effects of non-thermal atmospheric pressure pulsed plasma on the adhesion and durability of resin composite to dentin. Eur J Oral Sci 122:417–423. CrossRefGoogle Scholar
  24. 24.
    Hirata R, Teixeira H, Ayres AP, Machado LS, Coelho PG, Thompson VP, Giannini M (2015) Long-term adhesion study of self-etching systems to plasma-treated dentin. J Adhes Dent 17:227–233. Google Scholar
  25. 25.
    Lehmann A, Rueppell A, Schindler A, Zyla IM, Seifert HJ, Nothdurft F, Hannig M, Rupf S (2013) Modification of enamel and dentin surfaces by non-thermal atmospheric plasma. Plasma Process Polym 10:262–270. CrossRefGoogle Scholar
  26. 26.
    Han GJ, Chung SN, Chun BH, Kim CK, Oh KH, Cho BH (2012) Effect of the applied power of atmospheric pressure plasma on the adhesion of composite resin to dental ceramic. J Adhes Dent 14:461–469. Google Scholar
  27. 27.
    Silva NR, Coelho PG, Valverde GB, Becker K, Ihrke R, Quade A, Thompson VP (2011) Surface characterization of Ti and Y-TZP following non-thermal plasma exposure. J Biomed Mater Res B Appl Biomater 99:199–206. CrossRefGoogle Scholar
  28. 28.
    Valverde GB, Coelho PG, Janal MN, Lorenzoni FC, Carvalho RM, Thompson VP, Weltemann KD, Silva NR (2013) Surface characterisation and bonding of Y-TZP following non-thermal plasma treatment. J Dent 41:51–59. CrossRefGoogle Scholar
  29. 29.
    Prado MD, Roizenblit RN, Pacheco LV, Barbosa CA, Lima CO, Simão RA (2016) Effect of argon plasma on root dentin after use of 6% NaOCl. Braz Dent J 27:41–45. CrossRefGoogle Scholar
  30. 30.
    Ayres AP, Bonvent JJ, Mogilevych B, Soares LES, Martin AA, Ambrosano GM, Nascimento FD, Van Meerbeek B, Giannini M (2018) Effect of non-thermal atmospheric plasma on the dentin-surface topography and composition and on the bond strength of a universal adhesive. Eur J Oral Sci 126:53–65. CrossRefGoogle Scholar
  31. 31.
    Ayres APA, Pongprueksa P, De Munck J, Gré CP, Nascimento FD, Giannini M, Van Meerbeek B (2017) Mini-interfacial fracture toughness of a multimode adhesive bonded to plasma-treated dentin. J Adhes Dent 19:409–416. Google Scholar
  32. 32.
    Ritts AC, Li H, Yu Q, Xu C, Yao X, Hong L, Wang Y (2010) Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration. Eur J Oral Sci 118:510–516. CrossRefGoogle Scholar
  33. 33.
    Dong X, Ritts AC, Staller C, Yu Q, Chen M, Wang Y (2013) Evaluation of plasma treatment effects on improving adhesive-dentin bonding by using the same tooth controls and varying cross-sectional surface areas. Eur J Oral Sci 121:355–362. CrossRefGoogle Scholar
  34. 34.
    Hirata R, Sampaio C, Machado LS, Coelho PG, Thompson VP, Duarte S, Ayres AP, Giannini M (2016) Short- and long-term evaluation of dentin-resin interfaces formed by etch-and-rinse adhesives on plasma-treated dentin. J Adhes Dent 18:215–222. Google Scholar
  35. 35.
    Lazović S, Puač N, Miletić M, Maletić D, Malović G, Mojsilović S, Milenković P, Petrović ZLj (2010) Plasma needle treatment of the human peripheral blood-derived multipotent mesenchymal stem cells (hPB-MSC). The 3rd IC-PLANTS 11–12. March 2010, NagoyaGoogle Scholar
  36. 36.
    Puač N, Petrović ZL, Malović G, Dordević A, Živković S, Giba Z, Grubišić D (2006) Measurements of voltage–current characteristics of a plasma needle and its effect on plant cells. J Phys D Appl Phys 39:3514–3519. CrossRefGoogle Scholar
  37. 37.
    Van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev 88:927–941. CrossRefGoogle Scholar
  38. 38.
    Mittal KL (2009) Contact angle, wettability and adhesion. Koninklijke Brill NV, LeidenCrossRefGoogle Scholar
  39. 39.
    Starostina IA, Stoyanov OV, Deberdeev RY (2014) Polymer surfaces and interfaces: Acid-Base interactions and adhesion in polymer-metal systems. Apple Academic Press, TorontoCrossRefGoogle Scholar
  40. 40.
    Zhang Y, Yu Q, Wang Y (2014) Non-thermal atmospheric plasmas in dental restoration: improved resin adhesive penetration. J Dent 42:1033–1042. CrossRefGoogle Scholar
  41. 41.
    Chen W, Huang J, Du N, Liu XD, Wang XQ, Lv GH, Zhang GP, Guo LH, Yang SZ (2012) Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition. J Appl Phys 112:013304. CrossRefGoogle Scholar
  42. 42.
    Koban I, Duske K, Jablonowski L, Schröeder K, Nebe B, Sietmann R, Weltmann KD, Hübner NO, Kramer A, Kocher T (2011) Atmospheric plasma enhances wettability and osteoblast spreading on dentin in vitro: proof-of-principle. Plasma Process Polym 8:975–982. CrossRefGoogle Scholar
  43. 43.
    Schulein TM (1988) The smear layer on dentin. A status report for the American journal of dentistry. Am J Dent 1:264–270Google Scholar
  44. 44.
    Guo X, Spencer P, Wang Y, Ye Q, Yao X, Williams K (2007) Effects of a solubility enhancer on penetration of hydrophobic component in model adhesives into wet demineralized dentin. Dent Mater 23:1473–1481. CrossRefGoogle Scholar
  45. 45.
    Spencer P, Wang Y (2002) Adhesive phase separation at the dentin interface under wet bonding conditions. J Biomed Mater Res 62:447–456. CrossRefGoogle Scholar
  46. 46.
    Breschi M, Fabiani D, Sandrolini L, Colonna M, Sisti L, Vannini M, Mazzoni A, Ruggeri A, Pashley DH, Breschi L (2012) Electrical properties of resin monomers used in restorative dentistry. Dent Mater 28:1024–1031. CrossRefGoogle Scholar
  47. 47.
    Malacarne-Zanon J, Pashley DH, Agee KA, Foulger S, Alves MC, Breschi L, Cadenaro M, Garcia FP, Carrilho MR (2009) Effects of ethanol addition on the water sorption/solubility and percent conversion of comonomers in model dental adhesives. Dent Mater 25:1275–1284. CrossRefGoogle Scholar
  48. 48.
    Yiu CK, King NM, Pashley DH, Suh BI, Carvalho RM, Carrilho MR, Tay FR (2004) Effect of resin hydrophilicity and water storage on resin strength. Biomaterials 25:5789–5796. CrossRefGoogle Scholar
  49. 49.
    Cardoso MV, de Almeida Neves A, Mine A, Coutinho E, Van Landuyt K, De Munck J, Van Meerbeek B (2011) Current aspects on bonding effectiveness and stability in adhesive dentistry. Aust Dent J 56(Suppl 1):31–44. CrossRefGoogle Scholar
  50. 50.
    Feitosa VP, Sauro S, Ogliari FA, Ogliari AO, Yoshihara K, Zanchi CH, Correr-Sobrinho L, Sinhoreti MA, Correr AB, Watson TF, Van Meerbeek B (2014) Impact of hydrophilicity and length of spacer chains on the bonding of functional monomers. Dent Mater 30:e317–e323. CrossRefGoogle Scholar
  51. 51.
    Dong X, Li H, Chen M, Wang Y, Yu Q (2015) Plasma treatment of dentin surfaces for improving self-etching adhesive/dentin interface bonding. Clin Plasma Med 3:10–16. CrossRefGoogle Scholar
  52. 52.
    Kim JH, Han GJ, Kim CK, Oh KH, Chung SN, Chun BH, Cho BH (2016) Promotion of adhesive penetration and resin bond strength to dentin using non-thermal atmospheric pressure plasma. Eur J Oral Sci 124:89–95. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jovana N. Stasic
    • 1
  • Nenad Selaković
    • 2
  • Nevena Puač
    • 2
  • Maja Miletić
    • 3
  • Gordana Malović
    • 2
  • Zoran Lj. Petrović
    • 2
    • 4
  • Djordje N. Veljovic
    • 5
  • Vesna Miletic
    • 1
    Email author
  1. 1.School of Dental Medicine, DentalNet Research GroupUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Physics, Laboratory for gaseous electronicsUniversity of BelgradeBelgradeSerbia
  3. 3.School of Dental Medicine, Department of PathophysiologyUniversity of BelgradeBelgradeSerbia
  4. 4.Serbian Academy of Sciences and ArtsBelgradeSerbia
  5. 5.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations