Advertisement

Clinical Oral Investigations

, Volume 19, Issue 2, pp 509–517 | Cite as

Influence of surface treatment on osseointegration of dental implants: histological, histomorphometric and radiological analysis in vivo

  • José Luis Calvo-Guirado
  • Marta Satorres-NietoEmail author
  • Antonio Aguilar-Salvatierra
  • Rafael Arcesio Delgado-Ruiz
  • José Eduardo Maté-Sánchez de Val
  • Jordi Gargallo-Albiol
  • Gerardo Gómez-Moreno
  • Georgios E. Romanos
Original Article

Abstract

Objective

The aim of this article is to compare the influence of surface treatment on the integration (at 2, 4 and 8 weeks) of 120 dental implants inserted in 60 tibiae of rabbits.

Materials and methods

Four different surfaces were double-blind tested: blasted, acid-etched and discrete crystal deposition (DCD) (group A); blasted (group B); acid-etched (group C) and blasted and acid-etched (group D). Bone-to-implant contact plus reverse torque and bone level were measured at the time of implant insertion and at 14, 28 and 56 days of healing.

Results

Group A showed the highest early and late bone-to-implant contact (BIC) values: 40.8 ± 2.3 % at 14 days decreasing to 27.7 ± 1.1 % after 28 days and 39.4 ± 1.4 % at 56 days. For group B, the average BIC values at 14, 28 and 56 days were 23.34 ± 2.1, 23.77 ± 1.9 and 29.47 ± 1.7 %, respectively. Group C showed a value of 25.72 ± 2.3 % after 14 days of integration, 34.92 ± 2.2 % at 28 days and 32.91 ± 1.6 % at 56 days. Group D showed a BIC value of 32 ± 2.5 % at 14 days, 32.85 ± 1.4 % at 28 days and 34.04 ± 2.3 % at 56 days. In the scanning electron microscopy (SEM) analysis, no statistically significant differences were found. The Ca/P ratio values were 1.762 for surface A, 1.625 for surface B, 1.663 for surface C and finally 1.722 for surface D.

Conclusions

Therefore, we conclude that even if there seems to be a tendency to obtain better BIC results with surface A (blasted-etched and covered with hydroxyapatite (HA)), no statistical differences were obtained in this study.

Clinical relevance

The study shows the influence of different implant surfaces in increasing osseointegation for immediate loading implants.

Keywords

Implant surface Osseointegration Bone-to-implant contact Reverse torque 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Coelho PG, Granjeiro JM, Romanos G et al (2009) Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B Appl Biomater 88B:579–596CrossRefGoogle Scholar
  2. 2.
    Al-Nawas B, Groetz KA, Goetz H et al (2008) Comparative histomorphometry resonance frequency analysis of implants with moderately rough surfaces in a loaded animal model. Clin Oral Implants Res 19:1–8PubMedGoogle Scholar
  3. 3.
    Dohan Ehrenfest DM, Coelho PG, Kang BS, Sul YT, Albrektsson T (2010) Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 28:198–206CrossRefPubMedGoogle Scholar
  4. 4.
    Liu Y, Enggist L, Kuffer AF et al (2007) The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surface during the early phase of osseointegration. Biomaterials 28:2677–2686CrossRefPubMedGoogle Scholar
  5. 5.
    Ume W, Qahash M, Polimeni G et al (2008) Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-2: histologic observations. J Clin Periodontol 35:1001–1010CrossRefGoogle Scholar
  6. 6.
    Elias CN, Meirelles L (2010) Improving osseointegration of dental implants. Expert Rev Med Devices 7:241–256CrossRefPubMedGoogle Scholar
  7. 7.
    Puleo DA, Thomas MV (2006) Implant surfaces. Dent Clin N Am 50:323–338CrossRefPubMedGoogle Scholar
  8. 8.
    Sul Y, Johansson CB, Jeong Y et al (2002) Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Clin Oral Implants Res 13:152–159CrossRefGoogle Scholar
  9. 9.
    Sul Y, Johansson CB, Albrektsson T (2006) Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces. Int J Prosthodont 19:319–328PubMedGoogle Scholar
  10. 10.
    Degidi M, Perrotti V, Strocchi R et al (2009) Is insertion torque correlated to bone-implant contact percentage in early healing period? A histological and histomorphometrical evaluation of 17 human-retrieved dental implants. Clin Oral Implants Res 20:778–781CrossRefPubMedGoogle Scholar
  11. 11.
    Carr AB, Gerard DA, Larsen PE (2000) Histomorphometric analysis of implants anchorage for three types of dental implants following 6 months of healing in baboons jaw. Int J Oral Maxillofac Implants 15:785–791PubMedGoogle Scholar
  12. 12.
    De Pauw GA, Dermaut LR, Johansson CB et al (2002) A histomorphometric analysis of heavily loaded and non-loaded implants. Int J Oral Maxillofac Implants 17:405–412PubMedGoogle Scholar
  13. 13.
    Trisi P, Lazzara R, Rebaudi A et al (2003) Bone-implant contact on machine and dual acid-etched surfaces after 2 months of healing in human maxilla. J Periodontol 74:945–956CrossRefPubMedGoogle Scholar
  14. 14.
    Calvo-Guirado JL, Ortiz-Ruiz A, Negri B et al (2010) Histological and histomorphometric evaluation of immediate implant placement on a dog model with a new implant surface treatment. Clin Oral Implants Res 21:308–315CrossRefPubMedGoogle Scholar
  15. 15.
    Negri B, Calvo-guirado JL, Maté-Sanchez de Val JE et al (2013) Biomechanical and bone histomorphological evaluation of two surfaces on tapered and cylindrical root form implants: an experimental study in dogs. Clin Implant Dent Relat Res 15:799–808CrossRefPubMedGoogle Scholar
  16. 16.
    Johansson CB, Gretzer C, Jimbo R, Mattisson I, Ahlberg E (2012) Enhanced implant integration with hierarchically structured implants: a pilot study in rabbits. Clin Oral Implants Res 23:943–953CrossRefPubMedGoogle Scholar
  17. 17.
    Poulos NM, Rodriguez NA, Lee J et al (2011) Evaluation of a novel calcium phosphate-coated titanium porous oxide implant surface: a study in rabbits. Int J Oral Maxillofac Implants 26:731–738PubMedGoogle Scholar
  18. 18.
    Calvo-Guirado JL, Aguilar-Salvatierra A, Guardia J et al (2012) Evaluation of periimplant bone neoformation using different scanning electron microscope methods for measuring the BIC. A dog study. J Clin Exp Dent 4:8–13CrossRefGoogle Scholar
  19. 19.
    Berglundh T, Stavropoulos A, On behalf of Working Group 1 of the VIII European Workshop on Periodontology (2012) Preclinical in vivo research in implant dentistry. Consensus of the eighth European workshop on periodontology. J Clin Periodontol 39:1–5CrossRefPubMedGoogle Scholar
  20. 20.
    Berglundh T, Abrahamsson I, Lang NP et al (2003) De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res 14:251–262CrossRefPubMedGoogle Scholar
  21. 21.
    Faeda R, Spin-Nieto R, Marcantonio E et al (2012) Laser ablation in titanium implants followed by biomimetic hydroxyapatite coating: histomorphometric study in rabbits. Microsc Res Tech 75:940–948CrossRefPubMedGoogle Scholar
  22. 22.
    Shalabi MM, Gortemaker A, Van’tHof MA et al (2006) Implants surface roughness and bone healing: a systematic review. J Dent Res 85:496–500CrossRefPubMedGoogle Scholar
  23. 23.
    Fernandes E, Unikowski IL, Teixeira ER et al (2007) Primary stability of turned and acid-etched screw-type implants: a removal torque and histomorphometric study in rabbits. Int J Oral Maxillofac Implants 22:886–892Google Scholar
  24. 24.
    Gottlow J, Barkamo S, Sennerby L (2012) An experimental comparison of two different clinically used implant designs and surfaces. Clin Implants Dent Relat Res 14:204–212CrossRefGoogle Scholar
  25. 25.
    Cordioli G, Majzoub Z, Piattelli A et al (2000) Removal torque and histomorphometric investigation of 4 different titanium surfaces: an experimental study in the rabbit tibia. Int J Oral Maxillofac Implants 15:668–674PubMedGoogle Scholar
  26. 26.
    Schwarz F, Herten M, Sager M et al (2007) Bone regeneration in dehiscence-type defects at chemically modified (SLActive) and conventional SLA titanium implants: a pilot study in dogs. J Clin Periodontol 34:78–86CrossRefPubMedGoogle Scholar
  27. 27.
    Schwarz F, Sager M, Kadelka I et al (2010) Influence of titanium implant surface characteristics on bone regeneration in dehiscence-type defects: an experimental study in dogs. J Clin Periodontol 37:466–473CrossRefPubMedGoogle Scholar
  28. 28.
    Nakada H, Sakae T, Tanimoto Y et al (2012) Assessment of the quality of newly formed bone around titanium alloy implants by using X-ray photoelectron spectroscopy. Int J Biomater 2012:615018CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Le Guehennec L, Goyenvalle E, López-Heredia MA et al (2008) Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits. Clin Oral Implants Res 19:1103–1108CrossRefPubMedGoogle Scholar
  30. 30.
    Fontana F, Rocchietta I, Addis A, Schupbach P, Zanotti G, Simion M (2011) Effects of a calcium phosphate coating on the osseointegration of endosseous implants in a rabbit model. Clin Oral Implants Res 22:760–766CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • José Luis Calvo-Guirado
    • 1
  • Marta Satorres-Nieto
    • 2
    Email author
  • Antonio Aguilar-Salvatierra
    • 3
  • Rafael Arcesio Delgado-Ruiz
    • 4
  • José Eduardo Maté-Sánchez de Val
    • 1
  • Jordi Gargallo-Albiol
    • 2
  • Gerardo Gómez-Moreno
    • 3
  • Georgios E. Romanos
    • 4
  1. 1.Faculty of Medicine and DentistryUniversity of MurciaMurciaSpain
  2. 2.International University of CataluñaBarcelonaSpain
  3. 3.Faculty of DentistryUniversity of GranadaGranadaSpain
  4. 4.Stony Brook UniversityStony BrookUSA

Personalised recommendations