Advertisement

Finance and Stochastics

, Volume 23, Issue 3, pp 535–594 | Cite as

An SPDE model for systemic risk with endogenous contagion

  • Ben Hambly
  • Andreas SøjmarkEmail author
Article
  • 24 Downloads

Abstract

We propose a dynamic mean-field model for ‘systemic risk’ in large financial systems, derived from a system of interacting diffusions on the positive half-line with an absorbing boundary at the origin. These diffusions represent the distances-to-default of financial institutions, and absorption at zero corresponds to default. As a way of modelling correlated exposures and herd behaviour, we consider a common source of noise and a form of mean-reversion in the drift. Moreover, we introduce an endogenous contagion mechanism whereby the default of one institution causes a drop in the distances-to-default of the other institutions. In this way, we aim to capture key ‘system-wide’ effects on risk. The resulting mean-field limit is characterised uniquely by a nonlinear SPDE on the half-line with a Dirichlet boundary condition. The density of this SPDE gives the conditional law of a non-standard ‘conditional’ McKean–Vlasov diffusion, for which we provide a novel upper Dirichlet heat kernel type estimate. Depending on the realisations of the common noise and the rate of mean-reversion, the SPDE can exhibit rapid accelerations in the loss of mass at the boundary. In other words, the contagion mechanism can give rise to periods of significant systemic default clustering.

Keywords

Systemic risk Contagion Common noise Mean-field type SPDE on half-line Conditional McKean–Vlasov problem Particle system 

Mathematics Subject Classification (2010)

60H15 60F17 82C22 91G40 91G80 

JEL Classification

G01 G21 G32 

Notes

Acknowledgements

We thank two anonymous referees and the Associate Editor for their careful reading and suggestions for improvements, which has helped sharpen the presentation of this paper.

References

  1. 1.
    Acharya, V.V., Pedersen, L.H., Philippon, T., Richardson, M.: Measuring systemic risk. Rev. Financ. Stud. 30, 2–47 (2017) CrossRefGoogle Scholar
  2. 2.
    Allen, F., Gale, D.: Financial contagion. J. Polit. Econ. 108, 1–33 (2000) CrossRefGoogle Scholar
  3. 3.
    Azizpour, S., Giesecke, K., Schwenkler, G.: Exploring the sources of default clustering. J. Financ. Econ. 129, 154–183 (2018) CrossRefGoogle Scholar
  4. 4.
    Banerjee, T., Bernstein, A., Feinstein, Z.: Dynamic clearing and contagion in financial networks. Preprint (2018). Available online at: arXiv:1801.02091
  5. 5.
    Benoit, S., Colliard, J.-E., Hurlin, C., Pérignon, C.: Where the risks lie: a survey on systemic risk. Rev. Finance 21, 109–152 (2017) CrossRefzbMATHGoogle Scholar
  6. 6.
    Berg, T., Gider, J.: What explains the difference in leverage between banks and non-banks? J. Financ. Quant. Anal. 52, 2677–2702 (2017) CrossRefGoogle Scholar
  7. 7.
    Brunnermeier, M.K.: Deciphering the liquidity and credit crunch 2007–2008. J. Econ. Perspect. 23, 77–100 (2009) CrossRefGoogle Scholar
  8. 8.
    Brunnermeier, M.K., Gorton, G., Krishnamurthy, A.: Risk topography. NBER Macroecon. Annu. 26, 149–176 (2012) CrossRefGoogle Scholar
  9. 9.
    Bush, N., Hambly, B.M., Haworth, H., Jin, L., Reisinger, C.: Stochastic evolution equations in portfolio credit modelling. SIAM J. Financ. Math. 2, 627–664 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Capponi, A., Bo, L.: Systemic risk in interbanking networks. SIAM J. Financ. Math. 6, 386–424 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Carmona, R., Fouque, J.-P., Sun, L.-H.: Mean field games and systemic risk. Commun. Math. Sci. 13, 911–933 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cho, S., Kim, P., Park, H.: Two-sided estimates on Dirichlet heat kernels for time-dependent parabolic operators with singular drifts in \(C^{1,\alpha }\)-domains. J. Differ. Equ. 252, 1101–1145 (2012) CrossRefzbMATHGoogle Scholar
  13. 13.
    Cochrane, J.H.: Toward a run-free financial system. In: Baily, M.N., Taylor, J.B. (eds.) Across the Great Divide, pp. 197–249. Hoover Press, Stanford (2014) Google Scholar
  14. 14.
    Cont, R., Moussa, A., Santos, E.B.: Network structure and systemic risk in banking systems. In: Fouque, J.-P., Langsam, J. (eds.) Handbook of Systemic Risk, pp. 327–368. Cambridge University Press, Cambridge (2013) CrossRefGoogle Scholar
  15. 15.
    Cont, R., Wagalath, L.: Running for the exit: distressed selling and endogenous correlation in financial markets. Math. Finance 23, 718–741 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cont, R., Wagalath, L.: Fire sale forensics: measuring endogenous risk. Math. Finance 26, 835–866 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cvitanić, J., Ma, J., Zhang, J.: The law of large numbers for self-exciting correlated defaults. Stoch. Process. Appl. 122, 2781–2810 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Danielsson, J., Shin, H.S., Zigrand, J.-P.: Endogenous extreme events and the dual role of prices. Annu. Rev. Econ. 4, 111–129 (2012) CrossRefGoogle Scholar
  19. 19.
    Dees, S., Henry, J., Martin, R.: STAMPE: Stress-test analytics for macroprudential purposes in the Euro area. ECB (2017). Available online at: https://www.ecb.europa.eu/pub/pdf/other/stampe201702.en.pdf
  20. 20.
    Delarue, F., Inglis, J., Rubenthaler, S., Tanré, E.: Global solvability of a networked integrate-and-fire model of McKean–Vlasov type. Ann. Appl. Probab. 25, 2096–2133 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Delarue, F., Inglis, J., Rubenthaler, S., Tanré, E.: Particle systems with a singular mean-field self-excitation. Application to neuronal networks. Stoch. Process. Appl. 125, 2451–2492 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Duffie, D.: Financial regulatory reform after the crisis: an assessment. Manag. Sci. 64, 4835–4857 (2018) CrossRefGoogle Scholar
  23. 23.
    Duffie, D., Eckner, A., Horel, G., Saita, L.: Frailty correlated default. J. Finance 64, 2089–2123 (2009) CrossRefGoogle Scholar
  24. 24.
    Eisenberg, L., Noe, T.H.: Systemic risk in financial systems. Manag. Sci. 47, 236–249 (2001) CrossRefzbMATHGoogle Scholar
  25. 25.
    Fouque, J.-P., Ichiba, T.: Stability in a model of interbank lending. SIAM J. Financ. Math. 4, 784–803 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Fouque, J.-P., Sun, L.-H.: Systemic risk illustrated. In: Fouque, J.-P., Langsam, J. (eds.) Handbook on Systemic Risk, pp. 444–452. Cambridge University Press, Cambridge (2013) CrossRefGoogle Scholar
  27. 27.
    Garnier, J., Papanicolaou, G., Yang, T.-W.: Large deviations for a mean field model of systemic risk. SIAM J. Financ. Math. 4, 151–184 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Garnier, J., Papanicolaou, G., Yang, T.-W.: A risk analysis for a system stabilized by a central agent. Risk Decis. Anal. 6, 97–120 (2017) CrossRefzbMATHGoogle Scholar
  29. 29.
    Giesecke, K., Schwenkler, G., Sirignano, J.: Inference for large financial systems. Math. Finance (2019, forthcoming). Available online at: https://doi.org/10.2139/ssrn.3012751
  30. 30.
    Giesecke, K., Spiliopoulos, K., Sowers, R.: Default clustering in large portfolios: typical events. Ann. Appl. Probab. 23, 348–385 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Giesecke, K., Spiliopoulos, K., Sowers, R., Sirignano, J.: Large portfolio asymptotics for loss from default. Math. Finance 25, 77–114 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Glasserman, P., Young, H.P.: Contagion in financial networks. J. Econ. Lit. 54, 779–831 (2016) CrossRefGoogle Scholar
  33. 33.
    Gornall, W., Strebulaev, I.A.: Financing as a supply chain: the capital structure of banks and borrowers. J. Financ. Econ. 129, 510–530 (2018) CrossRefGoogle Scholar
  34. 34.
    Gyrya, P., Saloff-Coste, L.: Neumann and Dirichlet Heat Kernels in Inner Uniform Domains. Astérisque, vol. 336. Société Mathématique de France, Paris (2011) zbMATHGoogle Scholar
  35. 35.
    Hambly, B.M., Ledger, S.: A stochastic McKean–Vlasov equation for absorbing diffusions on the half-line. Ann. Appl. Probab. 27, 2698–2752 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Hambly, B.M., Ledger, S., Søjmark, A.: A McKean–Vlasov equation with positive feedback and blow-ups. Ann. Appl. Probab. (2019, forthcoming). Available online at: arXiv:1801.07703
  37. 37.
    Hellwig, M.F.: Systemic risk in the financial sector: an analysis of the subprime-mortgage financial crisis. Economist 157, 129–207 (2009) CrossRefGoogle Scholar
  38. 38.
    Hurd, T.: Contagion! Systemic Risk in Financial Networks. Springer Briefs in Quantitative Finance. Springer, Berlin (2016) CrossRefzbMATHGoogle Scholar
  39. 39.
    Inglis, J., Talay, D.: Mean-field limit of a stochastic particle system smoothly interacting through threshold hitting-times and applications to neural networks with dendritic component. SIAM J. Math. Anal. 47, 3884–3916 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Jakubowski, A.: The almost sure Skorokhod representation for subsequences in nonmetric spaces. Theory Probab. Appl. 42, 167–175 (1998) MathSciNetCrossRefGoogle Scholar
  41. 41.
    Kallianpur, G., Xiong, J.: Stochastic Differential Equations in Infinite Dimensional Spaces. Lecture Notes, Monograph Series. Institute of Mathematical Statistics, Bethesda (1995) zbMATHGoogle Scholar
  42. 42.
    Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, Berlin (1991) zbMATHGoogle Scholar
  43. 43.
    Lando, D., Nielsen, M.: Correlation in corporate defaults: contagion or conditional independence? J. Financ. Intermed. 19, 355–372 (2010) CrossRefGoogle Scholar
  44. 44.
    Ledger, S.: Sharp regularity near an absorbing boundary for solutions to second order SPDEs in a half-line with constant coefficients. Stoch. Partial Differ. Equ., Anal. Computat. 2, 1–26 (2014) MathSciNetzbMATHGoogle Scholar
  45. 45.
    Ledger, S.: Skorokhod’s M1 topology for distribution-valued processes. Electron. Commun. Probab. 21, 1–11 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Moreno-Bote, R., Parga, N.: Response of integrate-and-fire neurons to noisy inputs filtered by synapses with arbitrary time scales: firing rate and correlations. Neural Comput. 22, 1528–1572 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Nadtochiy, S., Shkolnikov, M.: Particle systems with singular interaction through hitting times: application in systemic risk modeling. Ann. Appl. Probab. 29, 89–129 (2019) MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Ostojic, S., Brunel, N., Hakim, V.: Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities. J. Comput. Neurosci. 26, 369–392 (2009) MathSciNetCrossRefGoogle Scholar
  49. 49.
    Pedersen, L.H.: When everyone runs for the exit. Int. J. Cent. Bank. 5, 177–199 (2009) Google Scholar
  50. 50.
    Schwartz, L.: Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Tata Institute of Fundamental Research. Oxford University Press, London (1973) zbMATHGoogle Scholar
  51. 51.
    Sowers, R., Spiliopoulos, K.: Default clustering in large pools: large deviations. SIAM J. Financ. Math. 6, 86–116 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Spiliopoulos, K.: Systemic risk and default clustering for large financial systems. In: Friz, P., et al. (eds.) Large Deviations and Asymptotic Methods in Finance, pp. 529–557. Springer, Berlin (2015) CrossRefGoogle Scholar
  53. 53.
    Whitt, W.: Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues. Springer, Berlin (2002) CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations