Advertisement

Performance evaluation of raspberry Pi platform for bioimpedance analysis using least squares optimization

  • Todd J. FreebornEmail author
Original Article
  • 19 Downloads

Abstract

One method for analyzing bioimpedance measurements collected from a tissue applies equivalent electrical circuits to represent the data. This typically requires curve-fitting or optimization procedures to determine the circuit parameters of the selected equivalent circuit model that best fit the collected data. This work describes the performance (in terms of accuracy and execution time) of a nonlinear least squares optimization implementation using SciPy on a Raspberry Pi (RPi) for the analysis of simulated bioimpedance measurements, compared to MATLAB implementations of the same method. The SciPy/RPi implementation yielded similar accuracy to the MATLAB counterparts though the execution time ranged from 1.4 × to 2.1 × longer than the MATLAB environments and 10× greater than the same Python implementation running on a desktop or laptop environment. The performance of this optimization implementation on the RPi does support its suitability for further bioimpedance applications and its further use for applications requiring postprocessing in addition to data collection from connected sensors.

Keywords

Raspberry Pi Bioimpedance Cole-impedance model Least Squares Performance 

Notes

References

  1. 1.
    Cressey D (2017) The DIY electronics transforming research. Nature 544:125–126. 10.1038/544125aCrossRefGoogle Scholar
  2. 2.
    Jones E, Oliphant E, Peterson P et al (2001) SciPy: open source scientific tools for python. http://www.scipy.org/ [Online; accessed 2017-07-31]
  3. 3.
    Johnston SJ, Cox SJ (2017) The Raspberry Pi: a technology disrupter, and the enabler of dreams. Electronics 6(3):51.  https://doi.org/10.3390/electronics6030051 CrossRefGoogle Scholar
  4. 4.
    Vujovic V, Maksimovic M (2015) Raspberry Pi as a sensor web node for home automation. Comput Electr Eng 44:153–171CrossRefGoogle Scholar
  5. 5.
    Lewis AJ, Campbell M, Stavroulakis P (2016) Performance evaluation of a cheap, open source, digital environmental monitor based on the Raspberry Pi. Measurement 87:228–235CrossRefGoogle Scholar
  6. 6.
    Kuziek J, Shienh A, Mathewson KE (2017) Transitioning EEG experiments away from the laboratory using a Raspberry Pi 2. J Neurosci Methods 277:75–82CrossRefGoogle Scholar
  7. 7.
    Ambroz M (2017) Raspberry Pi as a low-cost data acquisition system for human powered vehicles. Measurement 100:7–18CrossRefGoogle Scholar
  8. 8.
    Wijnen B, Hunt EJ, Anzalone GC, Pearce JM (2014) Open-source syringe pump library. PLoS One 9(9):e107216.  https://doi.org/10.1371/journal.pone.0107216 CrossRefGoogle Scholar
  9. 9.
    Tivnan M, Gurjar R, Wolf DE, Vishwanath K (2015) High frequency sampling of TTL pulses on a Raspberry Pi for diffuse correlation spectroscopy applications. Sensors 15:19709–19722.  https://doi.org/10.3390/s150819709 CrossRefGoogle Scholar
  10. 10.
    Pasquali V, Gualtieri R, D’Allesandro G, et al (2016) Monitoring and analyzing of circadian and ultradian locomotor activity based on Raspberry-Pi. Electronics 5(3):58.  https://doi.org/10.3390/electronics5030058 CrossRefGoogle Scholar
  11. 11.
    Neethu J, Surya R, Ashwini R, Sachin Kumar S, Soman KP (2015) A low cost implementation of multi-label classification algorithm using Mathematica on Raspberry Pi. Procedia Comput Sci 46:306–313CrossRefGoogle Scholar
  12. 12.
    Grimnes S, Martinsen O (2013) Bioimpedance and bioelectricity basics, 3rd edn. Academic Press, LondonGoogle Scholar
  13. 13.
    Zhu F, Kuhlmann MK, Kotanko P, Seibert E, Leonard EG, Levin NW (2008) A method for the estimation of hydration state during hemodialysis using a calf bioimpedance technique. Physiol Measure 29:S503–S516CrossRefGoogle Scholar
  14. 14.
    Nescolarde L, Yanguas J, Terricabras J, Lukaski H, Alomar X, Rosell-Ferrer J, Rodas GG (2017) Detection of muscle gaps by L-BIA in muscle injuries: clinical prognosis. Physiol Measure 38:L1–L9CrossRefGoogle Scholar
  15. 15.
    York S, Ward LC, Czerniec S, Lee MJ, Refshauge K, Kilbreath SL (2009) Single frequency versus bioimpedance spectroscopy for the assessment of lymphoedema. Breast Cancer Res Treat 117:117–182CrossRefGoogle Scholar
  16. 16.
    Cole KS (1940) Permeability and impermeability of cell membranes for ions. Proc Cold Spring Harbor Symp Quant Biol 8:110–122CrossRefGoogle Scholar
  17. 17.
    Westerlund S, Ekstam L (1994) Capacitor theory. IEEE Trans Dielectr Electr Insul 1(5):826–839CrossRefGoogle Scholar
  18. 18.
    Freeborn TJ, Fu B (2018) Fatigue-induced Cole electrical impedance model changes of biceps tissue bioimpedance. Fractal Fract 4(2):27.  https://doi.org/10.3390/fractalfract2040027 CrossRefGoogle Scholar
  19. 19.
    Halter RJ, Hartov A, Paulsen KD, Schned A, Heaney J (2008) Genetic and least squares algorithms for estimating spectral EIS parameters of prostatic tissues. Physiol Meas 29:S111–S123CrossRefGoogle Scholar
  20. 20.
    Gholami-Boroujeny S, Bolic M (2016) Extraction of Cole parameters from the electrical bioimpedance spectrum using stochastic optimization algorithms. Med Biol Eng Computer 54(4):643–651CrossRefGoogle Scholar
  21. 21.
    Yousri DA, AbdelAty AM, Said LA, AboBakr A, Radwan AG (2017) Biological inspired optimization algorithms for cole-impedance parameters identification. Int J Electro Commun 78:79–89CrossRefGoogle Scholar
  22. 22.
    Solmaz H, Ulgen Y, Tumer M (2009) Design of a micro-controller based Cole-Cole impedance meter for testing biological tissues, Proceedings of the World Congr. Med. Phys. Biomed. Eng., Munich, Germany, September 7–9, pp 488–491Google Scholar
  23. 23.
    Keshtkar A, Salehnia Z, Keshtkar A, Shokouhi B (2012) Bladder cancer detection using electrical impedance technique (tabriz mark 1). Pathol Res Int 470101:5.  https://doi.org/10.1155/2012/470101 Google Scholar
  24. 24.
    Piasecki T, Chabowski K, Nitsch K (2016) Design, calibration and tests of versatile low frequency impedance analyser based on ARM microcontroller. Measurement 91:155–161CrossRefGoogle Scholar
  25. 25.
    Villa F, Magnani A, Maggioni MA, Stahn A, Rampichini S, Merati G, Castiglioni P (2016) Wearable multi-frequency and multi-segment bioelectrical impedance spectroscopy for unobtrusive impedance spectroscopy for unobtrusively tracking body fluid shifts during physical activity in real-field applications: a preliminary study. Sensors 16(5):673CrossRefGoogle Scholar
  26. 26.
    Harder R, Diedrich A, Whitfield JS, Buchowski MS, Pietsch JB, Baudenbacher FJ (2016) Smart multi-frequency bioelectrical impedance spectrometer for BIA and BIVA applications. IEEE Trans Biomed Circuits Syst 10(4):912–919CrossRefGoogle Scholar
  27. 27.
    Hafid A, Benouar S, Medir-Talha M, Abtahi F, Attari M, Seoane F (2018) Full impedance cardiography measurement device using Raspberry Pi3 and system-on-chip biomedical instrumentation solutions. IEEE J Biomed Health Info 22(6):1883–1994CrossRefGoogle Scholar
  28. 28.
    Freeborn TJ, Maundy B, Elwakil AS (2014) Extracting the parameters of the double-dispersion Cole bioimpedance model from magnitude response measurements. Med Biol Eng Compute 52(9):749–758CrossRefGoogle Scholar
  29. 29.
    Freeborn TJ, Elwakil AS, Maundy B (2016) Factors impacting accurate Cole-impedance extractions from magnitude-only measurements, IEEE Conf. Systems Man Cybernetics, pp 223–227, Budapest, HungaryGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringThe University of AlabamaTuscaloosaUSA

Personalised recommendations