Advertisement

Personal and Ubiquitous Computing

, Volume 23, Issue 5–6, pp 765–775 | Cite as

Geographic forwarding rules to reduce broadcast redundancy in mobile ad hoc wireless networks

  • Mohammed SouidiEmail author
  • Ahmed Habbani
  • Halim Berradi
  • Fatna El Mahdi
Original Article

Abstract

The mobile ad hoc networks (MANETs) are self-organizing networks. They use the mechanism of broadcasting to discover the links between nodes, to share the topology information, and to maintain the routing tables. However, the broadcasting suffers from redundant retransmissions causing radio resources waste and packet loss, especially in large networks. In this paper, we propose a new decentralized technique, called geographic forwarding rules (GFRs), to reduce the number of broadcast messages in mobile ad hoc networks. We use the location information of nodes to divide the network into virtual zones. Then we try to avoid duplicate retransmissions between the zones. Our proposition reduces the amount of overhead while it achieves a successful dissemination. We focused our research on the optimized link state routing (OLSR) protocol, the most known proactive routing protocol in the MANETs. We demonstrate, by simulations, that our geographic forwarding rules keep the number of disseminated topology control (TC) messages less than that of the default forwarding rules (DFRs) of OLSR.

Keywords

Broadcasting OLSR GPS Overhead 

Notes

Acknowledgements

We thank the members of the Smart Systems Laboratory (SSL) who provided insight and expertise that greatly assisted the research. We would also like to show our gratitude to the Universite Mohammed V de Rabat Ecole Nationale Superieure d’Informatique et d’Analyse des Systemes (ENSIAS) that provided facilities and equipment.

References

  1. 1.
    Tseng Y-C et al (2002) The broadcast storm problem in a mobile ad hoc network. Wirel Netw 8(2–3):153–167CrossRefGoogle Scholar
  2. 2.
    Clementi A, Monti A, Silvestri R (2013) Fast flooding over Manhattan. Distrib Comput 26:25.  https://doi.org/10.1007/s00446-012-0182-8 CrossRefGoogle Scholar
  3. 3.
    Wang X, Wang S, Liang W, Bie R, Zhao F (2015) The dissemination distance of mobile opportunistic networks. Pers Ubiquit Comput 19(7):1011–1019CrossRefGoogle Scholar
  4. 4.
    Perkins CE, Royer EM (1999) Ad-hoc on-demand distance vector routing. In: Second IEEE workshop on mobile computing systems and applications, 1999. Proceedings. WMCSA ’99, New Orleans, pp 90–100Google Scholar
  5. 5.
    van Glabbeek R, Höfner P, Portmann M et al (2016) Modelling and verifying the AODV routing protocol. Distrib Comput 29:279.  https://doi.org/10.1007/s00446-015-0262-7 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Park VD, Corson MS (1997) A highly adaptive distributed routing algorithm for mobile wireless networks. In: INFOCOM ’97. Sixteenth annual joint conference of the ieee computer and communications societies. driving the information revolution., Proceedings IEEE, Kobe, vol 1403, pp 1405–1413Google Scholar
  7. 7.
    Jacquet P, Muhlethaler P, Clausen T, Laouiti A, Qayyum A, Viennot L (2001) Optimized link state routing protocol for ad hoc networks. In: Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century. Proceedings. IEEE International, Lahore University of Management Sciences, Pakistan, 2001, pp 62–68Google Scholar
  8. 8.
    Perkins CE, Bhagwat P (1994) Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. ACM SIGCOMM Computer Communication Review 24(4):234–244.  https://doi.org/10.1145/190809.190336 CrossRefGoogle Scholar
  9. 9.
    Haas ZJ, Pearlman MR (2001) The performance of query control schemes for the zone routing protocol. IEEE/ACM Trans Netw 9(4):427–438.  https://doi.org/10.1109/90.944341 CrossRefGoogle Scholar
  10. 10.
    Souidi M, Habbani A, Berradi H, Essaid B (2017) Node localization to optimize the MPR selection in smart mobile communication. In: Proceedings of the 2017 international conference on smart digital environment. ACM, pp 8–13Google Scholar
  11. 11.
    Zhang XM, Zhang Y, Yan F, Vasilakos AV (2015) Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Trans Mob Comput 14(4):742–754.  https://doi.org/10.1109/TMC.2014.2331966 CrossRefGoogle Scholar
  12. 12.
    Cadger F, Curran K, Santos J et al (2016) Location and Mobility-Aware Routing for Improving Multimedia Streaming Performance in MANETs. Wireless Pers Commun 86:1653.  https://doi.org/10.1007/s11277-015-3012-z CrossRefGoogle Scholar
  13. 13.
    Khabbazian M, Blake IF, Bhargava VK (2012) Local broadcast algorithms in wireless ad hoc networks: reducing the number of transmissions. IEEE Trans Mob Comput 11(3):402–413.  https://doi.org/10.1109/TMC.2011.67 CrossRefGoogle Scholar
  14. 14.
    Lou W, Wu J (2003) On reducing broadcast redundancy in ad hoc wireless networks. In: Proceedings of the 36th annual Hawaii international conference on system sciences, 2003. IEEE, p 10Google Scholar
  15. 15.
    Kitasuka T, Tagashira S (2013) Finding more efficient multipoint relay set to reduce topology control traffic of OLSR. In: 2013 IEEE 14th international symposium and workshops on World of wireless, mobile and multimedia networks (woWMom), pp 1–9Google Scholar
  16. 16.
    Zhang XM, Wang EB, Xia JJ, Sung DK (2013) A neighbor coverage-based probabilistic rebroadcast for reducing routing overhead in mobile ad hoc networks. IEEE Trans Mob Comput 12(3):424–433.  https://doi.org/10.1109/TMC.2011.277 CrossRefGoogle Scholar
  17. 17.
    Ruiz P, Bouvry P (2015) Survey on broadcast algorithms for mobile ad hoc networks. ACM Comput Surv 48(1):1–35.  https://doi.org/10.1145/2786005 CrossRefGoogle Scholar
  18. 18.
    Reina DG, Toral SL, Johnson P, Barrero F (2015) A survey on probabilistic broadcast schemes for wireless ad hoc networks. Ad Hoc Networks 25(Part A):263–292.  https://doi.org/10.1016/j.adhoc.2014.10.001 CrossRefGoogle Scholar
  19. 19.
    Yu J, Wang N, Wang G, Yu D (2013) Connected dominating sets in wireless ad hoc and sensor networks—a comprehensive survey. Comput Commun 36(2):121–134.  https://doi.org/10.1016/j.comcom.2012.10.005 CrossRefGoogle Scholar
  20. 20.
    Blum J, Ding M, Thaeler A, Cheng X (2005) Connected dominating set in sensor networks and MANETs. In: Du D-Z, Pardalos P (eds) Handbook of combinatorial optimization: supplement volume B. Springer, Boston, pp 329–369Google Scholar
  21. 21.
    Qayyum A, Viennot L, Laouiti A (2000) Multipoint relaying: an efficient technique for flooding in mobile wireless networks INRIAGoogle Scholar
  22. 22.
    Liang O, Sekercioglu YA, Mani N (2006) A survey of multipoint relay based broadcast schemes in wireless ad hoc networks. IIEEE Commun Surv Tutorials 8(4):30–46.  https://doi.org/10.1109/COMST.2006.283820 CrossRefGoogle Scholar
  23. 23.
    Sun C, Yin R-R, Hao X-C, Dou J-J, Liu B (2011) Connected dominating set topology control algorithm of heterogeneous wireless sensor networks. Ruanjian Xuebao/J of Softw 22(9):2137–2148Google Scholar
  24. 24.
    Akbari Torkestani J, Meybodi MR (2012) Finding minimum weight connected dominating set in stochastic graph based on learning automata. Inf Sci 200:57–77.  https://doi.org/10.1016/j.ins.2012.02.057 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhao Y, Wu J, Li F, Lu S (2012) On maximizing the lifetime of wireless sensor networks using virtual backbone scheduling. IEEE Trans Parallel Distrib Syst 23(8):1528–1535.  https://doi.org/10.1109/TPDS.2011.305 CrossRefGoogle Scholar
  26. 26.
    Yu JY, Chong PHJ (2005) A survey of clustering schemes for mobile ad hoc networks. IEEE Commun Surv Tutorials 7(1):32–48.  https://doi.org/10.1109/comst.2005.1423333 CrossRefGoogle Scholar
  27. 27.
    Bentaleb A, Boubetra A, Harous S (2013) Survey of clustering schemes in mobile Ad hoc networks. Commun Netw 05(02):8–14.  https://doi.org/10.4236/cn.2013.52B002 CrossRefGoogle Scholar
  28. 28.
    Chinara S, Rath SK (2009) A survey on one-hop clustering algorithms in mobile ad hoc networks. J Netw Syst Manage 17:183.  https://doi.org/10.1007/s10922-009-9123-7 CrossRefGoogle Scholar
  29. 29.
    Maihofer C (2004) A survey of geocast routing protocols. IEEE Commun Surv Tutorials 6(2):32–42.  https://doi.org/10.1109/comst.2004.5342238 CrossRefGoogle Scholar
  30. 30.
    Dekar L, Kheddouci H (2008) A cluster based mobility prediction scheme for ad hoc networks. Ad Hoc Netw 6(2):168–194.  https://doi.org/10.1016/j.adhoc.2006.11.002 CrossRefGoogle Scholar
  31. 31.
    Amis AD, Prakash R, Vuong THP, Huynh DT (2000) Max-min d-cluster formation in wireless ad hoc networks. In: INFOCOM 2000. Nineteenth annual joint conference of the IEEE computer and communications societies. Proceedings, vol 31. IEEE, pp 32–41Google Scholar
  32. 32.
    Kumar N, Chilamkurti N, Park JH (2013) ALCA: agent learningbased clustering algorithm in vehicular ad hoc networks. Pers Ubiquit Comput 17:1683.  https://doi.org/10.1007/s00779-012-0600-8 CrossRefGoogle Scholar
  33. 33.
    Wang L, Olariu S (2005) Cluster maintenance in mobile ad-hoc networks. Clust Comput 8(2-3):111–118.  https://doi.org/10.1007/s10586-005-6176-6 CrossRefGoogle Scholar
  34. 34.
    Banerjee A, King C-T, Hsiao H-C (2017) On state maintenance in cluster-based mobile ad-hoc networks.  https://doi.org/10.1016/j.adhoc.2017.08.007 CrossRefGoogle Scholar
  35. 35.
    Ko YB, Vaidya NH (2000) Location aided routing (LAR) in mobile ad hoc networks. Wirel Netw 6(4):307–321.  https://doi.org/10.1023/a:1019106118419 CrossRefGoogle Scholar
  36. 36.
    Hnatyshin V (2013) Improving MANET routing protocols through the use of geographical information. International Journal of Wireless & Mobile Networks 5(2):1CrossRefGoogle Scholar
  37. 37.
    Noguchi T, Kobayashi T (2017) Adaptive location-aware routing with directional antennas in mobile adhoc networks. In: 2017 international conference on computing, networking and communications (ICNC), pp 1006-1011Google Scholar
  38. 38.
    Mikki MA (2009) Energy efficient location aided routing protocol for wireless MANETs. arXiv preprint arXiv:0909.0093
  39. 39.
    Shen H, Zhao L (2013) ALERT: an anonymous location-based efficient routing protocol in MANETs. IEEE Trans Mob Comput 12(6):1079–1093CrossRefGoogle Scholar
  40. 40.
    Qayyum A, Viennot L, Laouiti A (2002) Multipoint relaying for flooding broadcast messages in mobile wireless networks. In: Proceedings of the 35th annual Hawaii international conference on system sciences, 2002. HICSS, 7-10 Jan. 2002, pp 3866– 3875Google Scholar
  41. 41.
    Lu T, Zhu J (2013) Genetic algorithm for energy-efficient QoS multicast routing. IEEE Commun Lett 17(1):31–34.  https://doi.org/10.1109/LCOMM.2012.112012.121467 CrossRefGoogle Scholar
  42. 42.
    The network simulator NS-3. Available: https://www.nsnam.org/
  43. 43.
    Carneiro G, Fortuna P, Ricardo M (2009) FlowMonitor: a network monitoring framework for the network simulator 3 (NS-3). In: Paper presented at the proceedings of the fourth international ICST conference on performance evaluation methodologies and tools, PisaGoogle Scholar
  44. 44.
    Aschenbruck N, Ernst R, Gerhards-Padilla E, Schwamborn M (2010) BonnMotion: a mobility scenario generation and analysis tool. In: Paper presented at the proceedings of the 3rd international ICST conference on simulation tools and techniques, TorremolinosGoogle Scholar
  45. 45.
    Hightower J, Borriello G (2001) Location systems for ubiquitous computing. Computer 34(8):57–66CrossRefGoogle Scholar
  46. 46.
    Mauve M, Widmer J, Hartenstein H (2001) A survey on position-based routing in mobile ad hoc networks. Network, IEEE 15(6):30–39.  https://doi.org/10.1109/65.967595 CrossRefGoogle Scholar
  47. 47.
    Wei X, Wang Q, Wang T, Fan J (2016) Jammer localization in multi-hop wireless network: a comprehensive survey. IEEE Commun Surv Tutorials 19(2):765–799CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.SSL Lab, ENSIASMohammed V UniversityRabatMorocco
  2. 2.SAMOVAR LabENSIIEParis-EvryFrance

Personalised recommendations