Advertisement

Personal and Ubiquitous Computing

, Volume 18, Issue 2, pp 449–464 | Cite as

Energy management in solar cells powered wireless sensor networks for quality of service optimization

  • Soledad Escolar
  • Stefano Chessa
  • Jesús Carretero
Original Article

Abstract

Sensor nodes equipped with solar cells and rechargeable batteries are useful in many outdoor, long-lasting applications. In these sensor nodes, the cycles of energy harvesting and battery recharge need to be managed appropriately in order to avoid sensor node unavailability due to energy shortages. To this purpose, we suggest sensor nodes to be programmed with alternative scheduling plans, each corresponding to a given energy requirement and meeting a given quality level. Thus, sensor nodes can select the scheduling plan that best suits to the expected energy production and the residual battery charge, in order to avoid sensor nodes' unavailability. We then propose an algorithm for the selection of the scheduling plan that aims at keeping the overall energy consumption neutral and that can sustain the sensor nodes’ activities uninterruptedly.

Keywords

Power management Wireless sensor networks Quality of service Solar cells Adaptive duty cycling 

Notes

Acknowledgments

This work has been funded by the Spanish Ministry of Science and Technology under the grant TIN2010-16497 “Técnicas Escalables de E/S en Entornos Distribuidos y de Computación de Altas Prestaciones".

References

  1. 1.
    Akkaya K, Younis M (2005) Energy and qos aware routing in wireless sensor networks. Cluster Comput 8:179–188. doi: 10.1007/s10586-005-6183-7 CrossRefGoogle Scholar
  2. 2.
    Alippi C, Anastasi G, Di Francesco M, Roveri M (2009) Energy management in wireless sensor networks with energy-hungry sensors. Instrum Meas Mag IEEE 12(2):16–23. doi: 10.1109/MIM.2009.4811133 CrossRefGoogle Scholar
  3. 3.
    Benini L, Bogliolo A, De Micheli G (2000) A survey of design techniques for system-level dynamic power management. IEEE Trans Very Large Scale Integr (VLSI) Syst 8(3):299–316. doi: 10.1109/92.845896 CrossRefGoogle Scholar
  4. 4.
    Bergonzini C, Brunelli D, Benini L (2009) Algorithms for harvested energy prediction in batteryless wireless sensor networks. In: 3rd international workshop on advances in sensors and interfaces, 2009. IWASI 2009, pp 144 –149 doi: 10.1109/IWASI.2009.5184785
  5. 5.
    Chen D, Varshney PK (2004) QoS support in wireless sensor networks: a survey. In: Proceedings of international conference on wireless networks Las Vegas, NVGoogle Scholar
  6. 6.
    Components F (2011) Bp solar—msx-005f—solar panelGoogle Scholar
  7. 7.
    Coorporation M (2010) Micaz datasheetGoogle Scholar
  8. 8.
    Escolar S, Chessa S, Carretero J (2012) Optimization of quality of service in wireless sensor networks powered by solar cells. In: 10th IEEE international symposium on parallel and distributed processing with applications, Madrid, Spain, p 8Google Scholar
  9. 9.
    Felemban E, Lee CG, Ekici E (2006) Mmspeed: multipath multi-speed protocol for qos guarantee of reliability and timeliness in wireless sensor networks. IEEE Trans Mobile Comput 5(6):738–754. doi: 10.1109/TMC.2006.79 CrossRefGoogle Scholar
  10. 10.
    chun Feng W, Feng X, Ce R (2008) Green supercomputing comes of age. IT Prof 10(1):17–23. doi: 10.1109/MITP.2008.8 CrossRefGoogle Scholar
  11. 11.
    He T, Stankovic J, Lu C, Abdelzaher T (2003) Speed: a stateless protocol for real-time communication in sensor networks. In: Proceedings of 23rd international conference on distributed computing systems, pp 46–55. doi: 10.1109/ICDCS.2003.1203451
  12. 12.
    Iyer R, Kleinrock L (2003) Qos control for sensor networks. In: IEEE international conference on communications, 2003. ICC ’03, vol 1, pp 517 – 521. doi: 10.1109/ICC.2003.1204230
  13. 13.
    Kansal A, Hsu J, Zahedi S, Srivastava MB (2007) Power management in energy harvesting sensor networks. ACM Trans Embed Comput Syst 6(4). doi: 10.1145/1274858.1274870
  14. 14.
    Kopetz H, Grunsteidl G (1993) Ttp—a time-triggered protocol for fault-tolerant real-time systems. In: The twenty-third international symposium on fault-tolerant computing, 1993. FTCS-23. Digest of Papers, pp 524–533. doi: 10.1109/FTCS.1993.627355
  15. 15.
    Lin C (1998) Qos routing in ad hoc wireless networks. In: Proceedings of 23rd annual conference on local computer networks, 1998. LCN ’98, pp 31–40. doi: 10.1109/LCN.1998.727644
  16. 16.
    Meteorology NS, Energy S (2011) Retscreen. http://eosweb.larc.nasa.gov/sse/RETScreen/
  17. 17.
    Moser C, Chen JJ, Thiele L (2009) Power management in energy harvesting embedded systems with discrete service levels. In: Proceedings of the 14th ACM/IEEE international symposium on low power electronics and design, ISLPED ’09, pp 413–418. ACM, New York, NY. doi: 10.1145/1594233.1594338
  18. 18.
    Murugesan S (2008) Harnessing green it: principles and practices. IT Prof 10(1):24–33. doi: 10.1109/MITP.2008.10 CrossRefGoogle Scholar
  19. 19.
    Raghunathan V, Kansal A, Hsu J, Friedman J, Srivastava M (2005) Design considerations for solar energy harvesting wireless embedded systems. In: Proceedings of 4th international symposium on information processing in sensor networks, IPSN ’05. IEEE Press, Piscataway, NJGoogle Scholar
  20. 20.
    Real J, Crespo A (2004) Mode change protocols for real-time systems: a survey and a new proposal. Real-Time Syst 26(2):161–197. doi: 10.1023/B:TIME.0000016129.97430.c6 CrossRefzbMATHGoogle Scholar
  21. 21.
    Salvadori F, de Campos M, Sausen P, de Camargo R, Gehrke C, Rech C, Spohn M, Oliveira A (2009) Monitoring in industrial systems using wireless sensor network with dynamic power management. IEEE Trans Instrum Meas 58(9):3104–3111. doi: 10.1109/TIM.2009.2016882 CrossRefGoogle Scholar
  22. 22.
    Sausen PS, de Brito Sousa JR, Spohn MA, Perkusich A, Lima AMN (2008) Dynamic power management with scheduled switching modes. Comput Commun 31:3625–3637. doi: 10.1016/j.comcom.2008.06.019 CrossRefGoogle Scholar
  23. 23.
    Sha L, Sha L, Rajkumar R, Rajkumar R, Lehoczky J, Lehoczky J, Ramamritham K, Ramamritham K (1988) Mode change protocols for priority-driven preemptive scheduling. Real-Time Syst 1:243–264CrossRefGoogle Scholar
  24. 24.
    Sinha A, Chandrakasan A (2001) Dynamic power management in wireless sensor networks. IEEE Design Test Comput 18(2):62–74. doi: 10.1109/54.914626 CrossRefGoogle Scholar
  25. 25.
    Tindell K, Burns A, Wellings (1992) A mode changes in priority preemptively scheduled systems. In: Real-time systems symposium, 1992, pp 100–109. doi: 10.1109/REAL.1992.242672
  26. 26.
    Xia F (2008) Qos challenges and opportunities in wireless sensor/actuator networks. Sensors 8(2):1099–1110. doi: 10.3390/s8021099 CrossRefGoogle Scholar
  27. 27.
    Yigitel MA, Incel OD, Ersoy C (2011) Qos-aware mac protocols for wireless sensor networks: a survey. Comput Netw 55:1982–2004. doi: 10.1016/j.comnet.2011.02.007 Google Scholar
  28. 28.
    Zhu C, Corson M (2002) Qos routing for mobile ad hoc networks. In: Twenty-first annual joint conference of the IEEE computer and communications societies, INFOCOM 2002, vol 2, pp 958–967. doi: 10.1109/INFCOM.2002.1019343

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Soledad Escolar
    • 1
  • Stefano Chessa
    • 2
    • 3
  • Jesús Carretero
    • 1
  1. 1.Department of Computer ScienceUniversity Carlos III of MadridMadridSpain
  2. 2.Department of Computer ScienceUniversity of PisaPisaItaly
  3. 3.ISTI-CNRPisaItaly

Personalised recommendations