Advertisement

A survey of trajectory distance measures and performance evaluation

  • Han Su
  • Shuncheng Liu
  • Bolong Zheng
  • Xiaofang Zhou
  • Kai ZhengEmail author
Special Issue Paper
  • 8 Downloads

Abstract

The proliferation of trajectory data in various application domains has inspired tremendous research efforts to analyze large-scale trajectory data from a variety of aspects. A fundamental ingredient of these trajectory analysis tasks and applications is distance measures for effectively determining how similar two trajectories are. We conduct a comprehensive survey of the trajectory distance measures. The trajectory distance measures are classified into four categories according to the trajectory data type and whether the temporal information is measured. In addition, the effectiveness and complexity of each distance measure are studied. The experimental study is also conducted on their effectiveness in the six different trajectory transformations.

Keywords

Trajectory distance measure Trajectory transformation Objective evaluation 

Notes

Acknowledgements

This research is supported by the NSFC (Grant Nos. 618020 54, 61972069, 61836007, 61832017, 61532018, 61902134), the Central Universities (UESTC: Grants No. ZYGX2016K YQD135, HUST: Grants Nos. 2019kfyXKJC021, 2019kfyX JJS091), and Dongguan Innovative Research Team Program (No. 2018607201008).

References

  1. 1.
    Abid, A., Zou, J.Y.: Learning a warping distance from unlabeled time series using sequence autoencoders. In: Advances in Neural Information Processing Systems, pp. 10568–10578 (2018)Google Scholar
  2. 2.
    Abul, O., Bonchi, F., Nanni, M.: Never walk alone: Uncertainty for anonymity in moving objects databases. In: IEEE 24th International Conference on Data Engineering. ICDE 2008, pp. 376–385. IEEE (2008)Google Scholar
  3. 3.
    Andrienko, G., Andrienko, N., Rinzivillo, S., Nanni, M., Pedreschi, D., Giannotti, F.: Interactive visual clustering of large collections of trajectories. In: IEEE Symposium on Visual Analytics Science and Technology. VAST 2009, pp. 3–10. IEEE (2009)Google Scholar
  4. 4.
    Andrienko, G., Andrienko, N., Wrobel, S.: Visual analytics tools for analysis of movement data. ACM SIGKDD Explor. Newsl. 9(2), 38–46 (2007)CrossRefGoogle Scholar
  5. 5.
    Beck, M., Robins, S.: Computing the Continuous Discretely. Springer, Berlin (2007)zbMATHGoogle Scholar
  6. 6.
    Bourrier, F., Dorren, L., Nicot, F., Berger, F., Darve, F.: Toward objective rockfall trajectory simulation using a stochastic impact model. Geomorphology 110(3–4), 68–79 (2009)CrossRefGoogle Scholar
  7. 7.
    Cai, Y., Ng, R.: Indexing spatio-temporal trajectories with Chebyshev polynomials. In: SIGMOD, pp. 99–610 (2004)Google Scholar
  8. 8.
    Cao, W., Wu, Z., Wang, D., Li, J., Wu, H.: Automatic user identification method across heterogeneous mobility data sources. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 978–989. IEEE (2016)Google Scholar
  9. 9.
    Chakka, V., Everspaugh, A., Patel, J.: Indexing large trajectory data sets with SETI. In: CIDR (2003)Google Scholar
  10. 10.
    Chan, F.K.-P., Fu, A.W.-C., Yu, C.: Haar wavelets for efficient similarity search of time-series: with and without time warping. IEEE Trans. Knowl. Data Eng. 3, 686–705 (2003)CrossRefGoogle Scholar
  11. 11.
    Chan, T.M.: A simple trapezoid sweep algorithm for reporting red/blue segment intersections. In: CCCG, pp. 263–268 (1994)Google Scholar
  12. 12.
    Chang, J.-W., Bista, R., Kim, Y.-C., Kim, Y.-K.: Spatio-temporal similarity measure algorithm for moving objects on spatial networks. In: International Conference on Computational Science and Its Applications, pp. 1165–1178. Springer (2007)Google Scholar
  13. 13.
    Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments in the plane. J. ACM 39(1), 1–54 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Chen, L., Ng, R.: On the marriage of lp-norms and edit distance. In: PVLDB, pp. 792–803 (2004)Google Scholar
  15. 15.
    Chen, L., Özsu, M., Oria, V.: Robust and fast similarity search for moving object trajectories. In: SIGMOD, pp. 491–502 (2005)Google Scholar
  16. 16.
    Chen, Q., Chen, L., Lian, X., Liu, Y., Yu, J.X.: Indexable PLA for efficient similarity search. In: Proceedings of the 33rd International Conference on Very large Data Bases, pp. 435–446. VLDB Endowment (2007)Google Scholar
  17. 17.
    Chow, C.-Y., Mokbel, M.F., Aref, W.G.: Casper*: query processing for location services without compromising privacy. ACM Trans. Database Syst. (TODS) 34(4), 24 (2009)CrossRefGoogle Scholar
  18. 18.
    Clarke, F.: Optimal solutions to differential inclusions. J. Optim. Theory Appl. 19(3), 469–478 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Cudre-Mauroux, P., Wu, E., Madden, S.: Trajstore: an adaptive storage system for very large trajectory data sets. In: ICDE, pp. 109–120 (2010)Google Scholar
  20. 20.
    D’Auria, M., Nanni, M., Pedreschi, D.: Time-focused density-based clustering of trajectories of moving objects. In: Proceedings of the Workshop on Mining Spatio-Temporal Data (MSTD-2005), Porto (2005)Google Scholar
  21. 21.
    Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008)CrossRefGoogle Scholar
  22. 22.
    Dodge, S., Laube, P., Weibel, R.: Movement similarity assessment using symbolic representation of trajectories. Int. J. Geogr. Inf. Sci. 26(9), 1563–1588 (2012)CrossRefGoogle Scholar
  23. 23.
    Eiter, T., Mannila, H.: Computing discrete fréchet distance. Technical report, Citeseer (1994)Google Scholar
  24. 24.
    Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast Subsequence Matching in Time-Series Databases, vol. 23. ACM, New York (1994)Google Scholar
  25. 25.
    Feng, Z., Zhu, Y.: A survey on trajectory data mining: techniques and applications. IEEE Access 4, 2056–2067 (2016)CrossRefGoogle Scholar
  26. 26.
    Flesch, T., Wilson, J.: A two-dimensional trajectory-simulation model for non-Gaussian, inhomogeneous turbulence within plant canopies. Bound. Layer Meteorol. 61(4), 349–374 (1992)CrossRefGoogle Scholar
  27. 27.
    Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Nearest neighbor search on moving object trajectories. In: SSTD, pp. 328–345 (2005)Google Scholar
  28. 28.
    Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In: IEEE 23rd International Conference on Data Engineering, 2007. ICDE 2007, pp. 816–825. IEEE (2007)Google Scholar
  29. 29.
    Gan, G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms, and Applications, vol. 20. SIAM, Philadelphia (2007)zbMATHCrossRefGoogle Scholar
  30. 30.
    Gasmelseed, A., Mahmood, N.: Study of hand preferences on signature for right-handed and left-handed peoples. Int. J. Adv. Eng. Technol. 1(5), 41–46 (1963)Google Scholar
  31. 31.
    Gauthier, T.D.: Detecting trends using Spearman’s rank correlation coefficient. Environ. Forensics 2(4), 359–362 (2001)CrossRefGoogle Scholar
  32. 32.
    Geurts, P.: Pattern extraction for time series classification. In: European Conference on Principles of Data Mining and Knowledge Discovery, pp. 115–127. Springer, Berlin (2001)CrossRefGoogle Scholar
  33. 33.
    Gudmundsson, J., Laube, P., Wolle, T.: Computational movement analysis. In: Kresse, W., Danko, D.M. (eds.) Springer handbook of geographic information, pp. 423–438. Springer, Berlin (2011)CrossRefGoogle Scholar
  34. 34.
    Guo, N., Ma, M., Xiong, W., Chen, L., Jing, N.: An efficient query algorithm for trajectory similarity based on Fréchet distance threshold. ISPRS Int. J. Geo-Inf. 6(11), 326 (2017)CrossRefGoogle Scholar
  35. 35.
    Guttman, A.: R-trees: A Dynamic Index Structure for Spatial Searching, vol. 14. ACM, Philadelphia (1984)Google Scholar
  36. 36.
    Heckbert, P., Garland, M.: Survey of polygonal surface simplification algorithms. Technical report, DTIC Document (1997)Google Scholar
  37. 37.
    Huang, Z., Shen, H.T., Shao, J., Cui, B., Zhou, X.: Practical online near-duplicate subsequence detection for continuous video streams. IEEE Trans. Multimed. 12(5), 386–398 (2010)CrossRefGoogle Scholar
  38. 38.
    Ichiye, T., Karplus, M.: Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins Struct. Funct. Bioinform. 11(3), 205–217 (1991)CrossRefGoogle Scholar
  39. 39.
    Ismail, A., Vigneron, A.: A new trajectory similarity measure for GPS data. In: Proceedings of the 6th ACM SIGSPATIAL International Workshop on GeoStreaming, pp. 19–22. ACM (2015)Google Scholar
  40. 40.
    Jeung, H., Shen, H., Zhou, X.: Convoy queries in spatio-temporal databases. In: ICDE, pp. 1457–1459 (2008)Google Scholar
  41. 41.
    Jeung, H., Yiu, M., Zhou, X., Jensen, C., Shen, H.: Discovery of convoys in trajectory databases. In: PVLDB, vol. 1, pp. 1068–1080. VLDB Endowment (2008)CrossRefGoogle Scholar
  42. 42.
    Jonker, R., Leve, G.D., Velde, J.A.V.D., Volgenant, A.: Technical note–rounding symmetric traveling salesman problems with an asymmetric assignment problem. Oper. Res. 28(3-part-i), 623–627 (1980)zbMATHCrossRefGoogle Scholar
  43. 43.
    Kahveci, T., Singh, A., Gurel, A.: Similarity searching for multi-attribute sequences. In: 14th International Conference on Scientific and Statistical Database Management. Proceedings, pp. 175–184. IEEE (2002)Google Scholar
  44. 44.
    Kearney, J., Hansen, S.: Stream editing for animation. Technical report, DTIC Document (1990)Google Scholar
  45. 45.
    Keogh, E., Pazzani, M.: Scaling up dynamic time warping for datamining applications. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 285–289. ACM (2000)Google Scholar
  46. 46.
    Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2005)CrossRefGoogle Scholar
  47. 47.
    Kim, Y., Kim, D., Kim, T., Sung, J., Yoo, S.: Target classification in sparse sampling acoustic sensor networks using iddc algorithm. In: International Conference on Embedded and Ubiquitous Computing, pp. 568–578. Springer, Berlin (2007)Google Scholar
  48. 48.
    Kruskal, J.B.: An overview of sequence comparison: time warps, string edits, and macromolecules. SIAM Rev. 25(2), 201–237 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 593–604. ACM (2007)Google Scholar
  50. 50.
    Li, H., Liu, J., Wu, K., Yang, Z., Liu, R.W., Xiong, N.: Spatio-temporal vessel trajectory clustering based on data mapping and density. IEEE Access 6, 58939–58954 (2018)CrossRefGoogle Scholar
  51. 51.
    Li, L., Li, X., Yang, Y., Dong, J.: Indoor tracking trajectory data similarity analysis with a deep convolutional autoencoder. Sustain. Cities Soc. 45, 588–595 (2018)CrossRefGoogle Scholar
  52. 52.
    Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object clusters. PVLDB 3, 723–734 (2010)Google Scholar
  53. 53.
    Lin, B., Su, J.: Shapes based trajectory queries for moving objects. In: Proceedings of the 13th Annual ACM International Workshop on Geographic Information Systems, pp. 21–30. ACM (2005)Google Scholar
  54. 54.
    Liu, H., Jin, C., Zhou, A.: Popular route planning with travel cost estimation. In: International Conference on Database Systems for Advanced Applications, pp. 403–418. Springer, Berlin (2016)CrossRefGoogle Scholar
  55. 55.
    Morse, M.D., Jignesh, Patel, M.: Efficient algorithms for similarity and skyline summary, Doctoral Committee on Multidimensional datasets. University of Michigan (2007)Google Scholar
  56. 56.
    Müller, M.: Dynamic time warping. In: Müller, M. (ed.) Information Retrieval for Music and Motion, pp. 69–84. Springer, Berlin (2007)CrossRefGoogle Scholar
  57. 57.
    Myers, C., Rabiner, L., Rosenberg, A.: Performance tradeoffs in dynamic time warping algorithms for isolated word recognition. IEEE Trans. Acous. Speech Signal Process. 28(6), 623–635 (1980)zbMATHCrossRefGoogle Scholar
  58. 58.
    Nascimento, M.A., Silva, J.R.: Towards historical R-trees. In: Proceedings of the 1998 ACM Symposium on Applied Computing, pp. 235–240. ACM (1998)Google Scholar
  59. 59.
    Ni, J., Ravishankar, C.: Indexing spatio-temporal trajectories with efficient polynomial approximations. TKDE 19(5), 663–678 (2007)Google Scholar
  60. 60.
    OpenStreetMap. http://www.openstreetmap.org/. Accessed 30 Dec 2018
  61. 61.
    Ostendorf, M., Roukos, S.: A stochastic segment model for phoneme-based continuous speech recognition. IEEE Trans. Acoust. Speech Signal Process. 37(12), 1857–1869 (1989)CrossRefGoogle Scholar
  62. 62.
    Panagiotakis, C., Pelekis, N., Kopanakis, I.: Trajectory voting and classification based on spatiotemporal similarity in moving object databases. In: International Symposium on Intelligent Data Analysis, pp. 131–142. Springer, Berlin (2009)CrossRefGoogle Scholar
  63. 63.
    Patel, P., Keogh, E., Lin, J., Lonardi, S.: Mining motifs in massive time series databases. In: Proceedings. 2002 IEEE International Conference on Data Mining. ICDM 2003, pp. 370–377. IEEE (2002)Google Scholar
  64. 64.
    Pelekis, N., Kopanakis, I., Marketos, G., Ntoutsi, I., Andrienko, G., Theodoridis, Y.: Similarity search in trajectory databases. In: 14th International Symposium on Temporal Representation and Reasoning, pp. 129–140. IEEE (2007)Google Scholar
  65. 65.
    Pelekis, N., Kopanakis, I., Marketos, G., Ntoutsi, I., Andrienko, G., Theodoridis, Y.: Similarity search in trajectory databases. In: Proceedings of the 14th International Symposium on Temporal Representation and Reasoning, TIME ’07, pp. 129–140, Washington, DC, USA, 2007. IEEE Computer Society (2007)Google Scholar
  66. 66.
    Pesara, A.C., Patil, V., Atrey, P.K.: Secure computing of gps trajectory similarity: a review. In: Proceedings of the 2nd ACM SIGSPATIAL Workshop on Recommendations for Location-Based Services and Social Networks, p. 3. ACM (2018)Google Scholar
  67. 67.
    Pfeifer, P.E., Deutrch, S.J.: A three-stage iterative procedure for space-time modeling. Technometrics 22(1), 35–47 (1980)CrossRefGoogle Scholar
  68. 68.
    Pfoser, D., Jensen, C.S., Theodoridis, Y., et al.: Novel approaches to the indexing of moving object trajectories. In: VLDB, pp. 395–406 (2000)Google Scholar
  69. 69.
    Picton, T., Hunt, M., Mowrey, R., Rodriguez, R., Maru, J.: Evaluation of brain-stem auditory evoked potentials using dynamic time warping. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. 71(3), 212–225 (1988)CrossRefGoogle Scholar
  70. 70.
    Priestley, M.: State-dependent models: a general approach to non-linear time series analysis. J. Time Series Anal. 1(1), 47–71 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Ranu, S., Deepak, P., Telang, A.D., Deshpande, P., Raghavan, S.: Indexing and matching trajectories under inconsistent sampling rates. In: 2015 IEEE 31st International Conference on Data Engineering (ICDE), pp. 999–1010. IEEE (2015)Google Scholar
  72. 72.
    Richalet, J., Rault, A., Testud, J., Papon, J.: Model predictive heuristic control: applications to industrial processes. Automatica 14(5), 413–428 (1978)CrossRefGoogle Scholar
  73. 73.
    Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko, N., Andrienko, G.: Visually driven analysis of movement data by progressive clustering. Inf. Vis. 7(3–4), 225–239 (2008)CrossRefGoogle Scholar
  74. 74.
    Robinson, M.: The temporal development of collision cascades in the binary-collision approximation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 48(1–4), 408–413 (1990)CrossRefGoogle Scholar
  75. 75.
    Sakurai, Y., Yoshikawa, M., Faloutsos, C.: FTW: fast similarity search under the time warping distance. In: Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 326–337. ACM (2005)Google Scholar
  76. 76.
    Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)CrossRefGoogle Scholar
  77. 77.
    Sanderson, A., Wong, A.: Pattern trajectory analysis of nonstationary multivariate data. IEEE Trans. Syst. Man Cybern. 10(7), 384–392 (1980)CrossRefGoogle Scholar
  78. 78.
    Shahin, M.K., Tharwat, A., Gaber, T., Hassanien, A.E.: A wheelchair control system using human-machine interaction: single-modal and multimodal approaches. J. Intell. Syst. 28(1), 115–132 (2017)CrossRefGoogle Scholar
  79. 79.
    Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial networks. Proc. VLDB Endow. 10(11), 1178–1189 (2017)CrossRefGoogle Scholar
  80. 80.
    Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in spatial networks. VLDB J. Int. J. Very Large Data Bases 23(3), 449–468 (2014)CrossRefGoogle Scholar
  81. 81.
    Soong, F., Rosenberg, A.: On the use of instantaneous and transitional spectral information in speaker recognition. IEEE Trans. Acoust. Speech Signal Proc. 36(6), 871–879 (1988)zbMATHCrossRefGoogle Scholar
  82. 82.
    Su, H., Zheng, K., Huang, J., Wang, H., Zhou, X.: Calibrating trajectory data for spatio-temporal similarity analysis. VLDB J. 24(1), 93–116 (2015)CrossRefGoogle Scholar
  83. 83.
    Su, H., Zheng, K., Wang, H., Huang, J., Zhou, X.: Calibrating trajectory data for similarity-based analysis. In: SIGMOD, pp. 833–844. ACM (2013)Google Scholar
  84. 84.
    Ta, N., Li, G., Xie, Y., Li, C., Hao, S., Feng, J.: Signature-based trajectory similarity join. IEEE Trans. Knowl. Data Eng. 29(4), 870–883 (2017)CrossRefGoogle Scholar
  85. 85.
    Takens, F.: Motion under the influence of a strong constraining force. In: Nitecki, Z., Robinson, C. (eds.) Global Theory of Dynamical Systems, pp. 425–445. Springer, Berlin (1980)CrossRefGoogle Scholar
  86. 86.
    Tao, Y., Papadias, D.: Efficient historical R-trees. In: Proceedings of Thirteenth International Conference on Scientific and Statistical Database Management. SSDBM 2001, pp. 223–232. IEEE (2001)Google Scholar
  87. 87.
    Tao, Y., Papadias, D.: MV3R-Tree: a spatio-temporal access method for timestamp and interval queries. VLDB 1, 431–440 (2001)Google Scholar
  88. 88.
    Toohey, K., Duckham, M.: Trajectory similarity measures. Sigspatial Spec. 7(1), 43–50 (2015)CrossRefGoogle Scholar
  89. 89.
    Vlachos, M., Gunopulos, D., Kollios, G.: Robust similarity measures for mobile object trajectories. In: 13th International Workshop on Database and Expert Systems Applications. Proceedings, pp. 721–726. IEEE (2002)Google Scholar
  90. 90.
    Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: 18th International Conference on Data Engineering. Proceedings, pp. 673–684. IEEE (2002)Google Scholar
  91. 91.
    Wang, H., Zheng, K., Xu, J., Zheng, B., Zhou, X., Sadiq, S.: Sharkdb: an in-memory column-oriented trajectory storage. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 1409–1418. ACM (2014)Google Scholar
  92. 92.
    Ward, A.: A generalization of the Frechet distance of two curves. Proc. Natl. Acad. Sci. U. S. A. 40(7), 598 (1954)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Xie, D., Li, F., Phillips, J.M.: Distributed trajectory similarity search. Proc. VLDB Endow. 10(11), 1478–1489 (2017)CrossRefGoogle Scholar
  94. 94.
    Xu, X., Han, J., Lu, W.: RT-tree: an improved R-tree indexing structure for temporal spatial databases. In: The International Symposium on Spatial Data Handling (SDH), pp. 1040–1049. Zurich (1990)Google Scholar
  95. 95.
    Yamaguchi, S., Saito, Y., Anami, S., Michizono, S.: Trajectory simulation of multipactoring electrons in an S-band pillbox RF window. IEEE Trans. Nucl. Sci. 39(2), 278–282 (1992)CrossRefGoogle Scholar
  96. 96.
    Yi, B., Jagadish, H., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping. In: 14th International Conference on Data Engineering. Proceedings, pp. 201–208. IEEE (1998)Google Scholar
  97. 97.
    Zhang, X., Han, K.-L.: High-order symplectic integration in quasi-classical trajectory simulation: case study for O(\(^1\)D) + H\(_2\). Int. J. Quantum Chem. 106(8), 1815–1819 (2006)CrossRefGoogle Scholar
  98. 98.
    Zheng, K., Su, H., Bolong, Z., Shuo, S., Xu, J., Liu, J., Zhou, X.: Interactive top-k spatial keyword queries. In: IEEE International Conference on Data Engineering (2015)Google Scholar
  99. 99.
    Zheng, K., Zhao, Y., Lian, D., Zheng, B., Liu, G., Zhou, X.: Reference-based framework for spatio-temporal trajectory compression and query processing. IEEE Trans. Knowl. Data Eng. (2019).  https://doi.org/10.1109/TKDE.2019.2914449 CrossRefGoogle Scholar
  100. 100.
    Zheng, K., Zheng, Y., Yuan, N.J., Shang, S., Zhou, X.: Online discovery of gathering patterns over trajectories. IEEE Trans. Knowl. Data Eng. 26(8), 1974–1988 (2013)CrossRefGoogle Scholar
  101. 101.
    Zheng, Y., Zhang, L., Xie, X., Ma, W.: Mining interesting locations and travel sequences from GPS trajectories. In: WWW, pp. 791–800. ACM (2009)Google Scholar
  102. 102.
    Zuo, X., Jin, X.: General hierarchical model (GHM) to measure similarity of time series. ACM SIGMOD Rec. 36(1), 13–18 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Electronic Science and Technology of ChinaChengduChina
  2. 2.Huazhong University of Science and TechnologyWuhanChina
  3. 3.University of QueenslandBrisbaneAustralia
  4. 4.Institute of Electronic and Information Engineering of UESTC in GuangdongDongguanChina

Personalised recommendations