Advertisement

Catalytic effect of riboflavin on electron transfer from NADH to aquacobalamin

  • Ilia A. Dereven’kovEmail author
  • Luciana Hannibal
  • Sergei V. Makarov
  • Pavel A. Molodtsov
Original Paper
  • 54 Downloads

Abstract

Reduction of cobalamin by non-dedicated cellular reductases has been reported in earlier work, however, the sources of reducing power and the mechanisms are unknown. This study reports results of kinetic and mechanistic investigation of the reaction between aquacobalamin, H2OCbl, and reduced β-nicotinamide adenine dinucleotide, NADH. This interaction leads to the formation of one-electron reduced cobalamin, cob(II)alamin, and proceeds via water substitution on aquacobalamin by NADH and further decomposition of NADH–Co(III) complex to cob(II)alamin and NADH·+. Riboflavin catalyzes the reduction of aquacobalamin by NADH both in free form and with aquacobalamin bound to the cobalamin processing enzyme CblC. The rate-determining step of this catalytic reaction is the interaction between riboflavin and NADH to produce a charge transfer complex that reacts with aquacobalamin. Aquacobalamin quenches the fluorescence of NADH and riboflavin predominantly via a static mechanism.

Graphic abstract

Keywords

Cobalamin NADH CblC Flavin Reaction mechanism 

Abbreviations

AdoCbl

Adenosylcobalamin

ADP

Adenosine diphosphate

Cbl

Cobalamin

CNCbl

Cyanocobalamin

DMBI

5,6-Dimethylbenzimidazole

FAD

Flavin adenine dinucleotide

FMN

Flavin mononucleotide

FMNH2

Reduced flavin

H2OCbl

Aquacobalamin

MeCbl

Methylcobalamin

CblC

Also known as MMACHC, methylmalonic aciduria combined with homocystinuria, cobalamin (cbl)C type

NADH

Reduced form of β-nicotinamide adenine dinucleotide

NADPH

Reduced form of β-nicotinamide adenine dinucleotide phosphate

Rib

Riboflavin

Notes

Acknowledgements

This work was supported by the Russian Science Foundation (Project No. 19-73-00147) to IAD.

Supplementary material

775_2019_1745_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1465 kb)

References

  1. 1.
    Hannibal L, Axhemi A, Glushchenko AV, Moreira ES, Brasch NE, Jacobsen DW (2008) Clin Chem Lab Med 46:1739–1746PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Brown KL (2005) Chem Rev 105:2075–2149PubMedCrossRefGoogle Scholar
  3. 3.
    Kräutler B (2005) Biochem Soc Trans 33:806–810PubMedCrossRefGoogle Scholar
  4. 4.
    Matthews RG (2009) Met Ions Life Sci 6:53–114PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Dereven’kov IA, Salnikov DS, Silaghi-Dumitrescu R, Makarov SV, Koifman OI (2016) Coord Chem Rev 309:68–83CrossRefGoogle Scholar
  6. 6.
    Dereven’kov IA, Salnikov DS, Makarov SV, Boss GR, Koifman OI (2013) Dalton Trans 42:15307–15316PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chithambarathanu Pillai G, Gould ES (1986) Inorg Chem 25:3353–3356CrossRefGoogle Scholar
  8. 8.
    Dereven’kov IA, Salnikov DS, Makarov SV (2017) Russ J Phys Chem A 91:2404–2408CrossRefGoogle Scholar
  9. 9.
    Plymale NT, Dassanayake RS, Hassanin HA, Brasch NE (2012) Eur J Inorg Chem 2012:913–921CrossRefGoogle Scholar
  10. 10.
    Mukherjee R, Brasch NE (2011) Chem Eur J 17:11723–11727PubMedCrossRefGoogle Scholar
  11. 11.
    Subedi H, Brasch NE (2015) Eur J Inorg Chem 2015:3825–3834CrossRefGoogle Scholar
  12. 12.
    Olteanu H, Banerjee R (2001) J Biol Chem 276:35558–35563PubMedCrossRefGoogle Scholar
  13. 13.
    Olteanu H, Munson T, Banerjee R (2002) Biochemistry 41:13378–13385PubMedCrossRefGoogle Scholar
  14. 14.
    Wolthers KR, Scrutton NS (2004) Biochemistry 43:490–500PubMedCrossRefGoogle Scholar
  15. 15.
    Olteanu H, Wolthers KR, Munro AW, Scrutton NS, Banerjee R (2004) Biochemistry 43:1988–1997PubMedCrossRefGoogle Scholar
  16. 16.
    Gherasim CG, Zaman U, Raza A, Banerjee R (2008) Biochemistry 47:12515–12522PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wolthers KR, Lou X, Toogood HS, Leys D, Scrutton NS (2007) Biochemistry 46:11833–11844PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Wolthers KR, Scrutton NS (2007) Biochemistry 46:6696–6709PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wolthers KR, Basran J, Munro AW, Scrutton NS (2003) Biochemistry 42:3911–3920PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wolthers KR, Toogood HS, Jowitt TA, Marshall KR, Leys D, Scrutton NS (2007) FEBS J 274:738–750PubMedCrossRefGoogle Scholar
  21. 21.
    Yamada K, Gravel RA, Toraya T, Matthews RG (2006) PNAS 103:9476–9481PubMedCrossRefGoogle Scholar
  22. 22.
    Koutmos M, Gherasim C, Smith JL, Banerjee R (2011) J Biol Chem 286:29780–29787PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Pezacka EH (1993) Biochim Biophys Acta 11:167–177CrossRefGoogle Scholar
  24. 24.
    Watanabe F, Saido H, Yamaji R, Miyatake K, Isegawa Y, Ito A, Yubisui T, Rosenblatt DS, Nakano Y (1996) J Nutr 126:2947–2951PubMedCrossRefGoogle Scholar
  25. 25.
    Barker HA, Smyth RD, Weissbach H, Toohey JI, Ladd JN, Volcani BE (1960) J Biol Chem 235:480–488PubMedGoogle Scholar
  26. 26.
    Lakowicz JR (2006) Quenching of fluorescence. In: Lakowicz JR (ed) Principles of fluorescence spectroscopy. Springer, Boston, pp 277–330CrossRefGoogle Scholar
  27. 27.
    Kim J, Hannibal L, Gherasim C, Jacobsen DW, Banerjee R (2009) J Biol Chem 284:33418–33424PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Stich TA, Buan NR, Brunold TC (2004) J Am Chem Soc 126:9735–9749PubMedCrossRefGoogle Scholar
  29. 29.
    Schrauzer GN, Deutsch E, Windgassen RJ (1968) J Am Chem Soc 90:2441–2442PubMedCrossRefGoogle Scholar
  30. 30.
    Saleh FS, Rahman MR, Okajima T, Mao L, Ohsaka T (2011) Bioelectrochemistry 80:121–127PubMedCrossRefGoogle Scholar
  31. 31.
    Scott TG, Spencer RD, Leonard NJ, Weber G (1970) J Am Chem Soc 90:687–695CrossRefGoogle Scholar
  32. 32.
    Xia L, Cregan AG, Berben LA, Brasch NE (2004) Inorg Chem 43:6848–6857PubMedCrossRefGoogle Scholar
  33. 33.
    Oppenheimer NJ, Kaplan NO (1974) Biochemistry 13:4675–4685PubMedCrossRefGoogle Scholar
  34. 34.
    Margolis SA, Yap WT, Matthews B, Schaffer R (1978) J Liq Chromatogr 1:669–691CrossRefGoogle Scholar
  35. 35.
    Meier M, van Eldik R (1993) Inorg Chem 32:2635–2639CrossRefGoogle Scholar
  36. 36.
    Knapton L, Marques HM (2005) Dalton Trans 2005:889–895CrossRefGoogle Scholar
  37. 37.
    Zielonka J, Marcinek A, Adamus J, Gȩbicki J (2003) J Phys Chem A 107:9860–9864CrossRefGoogle Scholar
  38. 38.
    Blankenhorn G (1975) Biochemistry 14:3172–3176PubMedCrossRefGoogle Scholar
  39. 39.
    Blankenhorn G (1976) Eur J Biochem 67:67–80PubMedCrossRefGoogle Scholar
  40. 40.
    Lin T-Y, Werther T, Jeoung J-H, Dobbek H (2012) J Biol Chem 287:38338–38346PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sena FV, Sousa FM, Oliveira ASF, Soares CM, Catarino T, Pereira MM (2018) Redox Biol 16:209–214PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Blaza JN, Bridges HR, Aragão D, Dunn EA, Heikal A, Cook GM, Nakatani Y, Hirst J (2017) Sci Rep 7:40165PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lakowicz JR, Weber G (1973) Biochemistry 12:4161–4170PubMedCrossRefGoogle Scholar
  44. 44.
    Hannibal L, Kim J, Brasch NE, Wang S, Rosenblatt DS, Banerjee R, Jacobsen DW (2009) Mol Genet Metab 2009(97):260–266CrossRefGoogle Scholar
  45. 45.
    Gherasim C, Hannibal L, Rajagopalan D, Jacobsen DW, Banerjee R (2013) Biochimie 95:1023–1032PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Jeong J, Ha TS, Kim J (2011) BMB Rep 44:170–175PubMedCrossRefGoogle Scholar
  47. 47.
    Sloan JL, Carrillo N, Adams D, Venditti CP (2008) Disorders of intracellular cobalamin metabolism [Updated 2018 Sep 6]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) GeneReviews® [Internet]. University of Washington, Seattle, pp 1993–2019. https://www.ncbi.nlm.nih.gov/books/NBK1328/
  48. 48.
    Trefz FK, Scheible D, Frauendienst-Egger G, Huemer M, Suomala T, Fowler B, Haas D, Baumgartner MR (2016) Mol Genet Metab Rep 6:55–59PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Dionisi-Vici C, Martinelli D, Ceravolo F, Boenzi S, Pastore A (2013) Mol Genet Metab 109:329–330PubMedCrossRefGoogle Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  1. 1.Department of Food ChemistryIvanovo State University of Chemistry and TechnologyIvanovoRussian Federation
  2. 2.Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical CenterUniversity of FreiburgFreiburgGermany

Personalised recommendations