Advertisement

Copper and the brain noradrenergic system

  • Svetlana LutsenkoEmail author
  • Clorissa Washington-Hughes
  • Martina Ralle
  • Katharina Schmidt
Mini Review
  • 76 Downloads
Part of the following topical collections:
  1. Metal Ions and Degenerative Diseases

Abstract

Copper (Cu) plays an essential role in the development and function of the brain. In humans, genetic disorders of Cu metabolism may cause either severe Cu deficiency (Menkes disease) or excessive Cu accumulation (Wilson disease) in the brain tissue. In either case, the loss of Cu homeostasis results in catecholamine misbalance, abnormal myelination of neurons, loss of normal brain architecture, and a spectrum of neurologic and/or psychiatric manifestations. Several metabolic processes have been identified as particularly sensitive to Cu dis-homeostasis. This review focuses on the role of Cu in noradrenergic neurons and summarizes the current knowledge of mechanisms that maintain Cu homeostasis in these cells. The impact of Cu misbalance on catecholamine metabolism and functioning of noradrenergic system is discussed.

Keywords

Copper Catecholamines Dopamine-β-hydroxylase Locus coeruleus 

Notes

Acknowledgements

This work was supported by the National Institute of Health Grant R01 GM101502 to SL and R01 GM101502-S1 to CWH. The authors would like to thank O. Antipova for support and assistance with X-ray fluorescence microscopy data collection at the Advanced Photon Source part of the Argonne National laboratory supported by the Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts.

References

  1. 1.
    Solomon EI et al (2014) Copper active sites in biology. Chem Rev 114(7):3659–3853PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lucas MF, Rousseau DL, Guallar V (2011) Electron transfer pathways in cytochrome c oxidase. Biochim Biophys Acta 1807(10):1305–1313PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Timon-Gomez A et al (2018) Mitochondrial cytochrome c oxidase biogenesis: recent developments. Semin Cell Dev Biol 76:163–178PubMedCrossRefGoogle Scholar
  4. 4.
    Jett KA, Leary SC (2018) Building the CuA site of cytochrome c oxidase: a complicated, redox-dependent process driven by a surprisingly large complement of accessory proteins. J Biol Chem 293(13):4644–4652PubMedCrossRefGoogle Scholar
  5. 5.
    Banks CJ, Andersen JL (2019) Mechanisms of SOD1 regulation by post-translational modifications. Redox Biol 26:101270PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sirangelo I, Iannuzzi C (2017) The role of metal binding in the amyotrophic lateral sclerosis-related aggregation of copper-zinc superoxide dismutase. Molecules 22(9):1429PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Park JH et al (2019) SOD1 deficiency: a novel syndrome distinct from amyotrophic lateral sclerosis. Brain 142(8):2230–2237PubMedCrossRefGoogle Scholar
  8. 8.
    Huai J, Zhang Z (2019) Structural properties and interaction partners of familial ALS-associated SOD1 mutants. Front Neurol 10:527PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bousquet-Moore D, Mains RE, Eipper BA (2010) Peptidylgycine alpha-amidating monooxygenase and copper: a gene-nutrient interaction critical to nervous system function. J Neurosci Res 88(12):2535–2545PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Maheshwari S et al (2018) Effects of copper occupancy on the conformational landscape of peptidylglycine alpha-hydroxylating monooxygenase. Commun Biol 1:74PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Vendelboe TV et al (2016) The crystal structure of human dopamine beta-hydroxylase at 2.9 A resolution. Sci Adv 2(4):e1500980PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Zhang Y et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Takikita S et al (2015) Increased apoptosis and hypomyelination in cerebral white matter of macular mutant mouse brain. Mol Genet Metab Rep 4:25–29PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    McGee TP, Houston CM, Brickley SG (2013) Copper block of extrasynaptic GABAA receptors in the mature cerebellum and striatum. J Neurosci 33(33):13431–13435PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Gasperini L et al (2015) Prion protein and copper cooperatively protect neurons by modulating NMDA receptor through S-nitrosylation. Antioxid Redox Signal 22(9):772–784PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Marchetti C, Baranowska-Bosiacka I, Gavazzo P (2014) Multiple effects of copper on NMDA receptor currents. Brain Res 1542:20–31PubMedCrossRefGoogle Scholar
  17. 17.
    Salazar-Weber NL, Smith JP (2011) Copper inhibits NMDA receptor-independent LTP and modulates the paired-pulse ratio after LTP in mouse hippocampal slices. Int J Alzheimers Dis 2011:864753PubMedPubMedCentralGoogle Scholar
  18. 18.
    Nargund S, Qiu J, Goudar CT (2015) Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis. Biotechnol Prog 31(5):1179–1186PubMedCrossRefGoogle Scholar
  19. 19.
    Scheiber IF, Dringen R (2011) Copper accelerates glycolytic flux in cultured astrocytes. Neurochem Res 36(5):894–903PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Morrell A et al (2017) The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life 69(4):263–270PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Quinn JF et al (2011) Gender effects on plasma and brain copper. Int J Alzheimers Dis 2011:150916PubMedPubMedCentralGoogle Scholar
  22. 22.
    Jafri SK et al (2017) Menkes disease: a rare disorder. J Pak Med Assoc 67(10):1609–1611PubMedGoogle Scholar
  23. 23.
    Czlonkowska A et al (2018) Wilson disease. Nat Rev Dis Primers 4(1):21PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kaler SG, Holmes CS (2013) Catecholamine metabolites affected by the copper-dependent enzyme dopamine-beta-hydroxylase provide sensitive biomarkers for early diagnosis of menkes disease and viral-mediated ATP7A gene therapy. Adv Pharmacol 68:223–233PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Barkhatova VP et al (1992) Pathological status of catecholamines in the corpus striatum in hepatocerebral dystrophy (Wilson-Konovalov disease). Zh Nevropatol Psikhiatr Im S S Korsakova 92(4):8–10PubMedGoogle Scholar
  26. 26.
    Snow BJ et al (1991) The nigrostriatal dopaminergic pathway in Wilson’s disease studied with positron emission tomography. J Neurol Neurosurg Psychiatry 54(1):12–17PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Westermark K et al (1995) Neurological Wilson’s disease studied with magnetic resonance imaging and with positron emission tomography using dopaminergic markers. Mov Disord 10(5):596–603PubMedCrossRefGoogle Scholar
  28. 28.
    Jeon B et al (1998) Dopamine transporter imaging with [123I]-beta-CIT demonstrates presynaptic nigrostriatal dopaminergic damage in Wilson’s disease. J Neurol Neurosurg Psychiatry 65(1):60–64PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Bandmann O, Weiss KH, Kaler SG (2015) Wilson’s disease and other neurological copper disorders. Lancet Neurol 14(1):103–113PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Vahter M et al (1997) Concentrations of copper, zinc and selenium in brain and kidney of second trimester fetuses and infants. J Trace Elem Med Biol 11(4):215–222PubMedCrossRefGoogle Scholar
  31. 31.
    Wang LM et al (2010) Bioimaging of copper alterations in the aging mouse brain by autoradiography, laser ablation inductively coupled plasma mass spectrometry and immunohistochemistry. Metallomics 2(5):348–353PubMedCrossRefGoogle Scholar
  32. 32.
    Palm R, Wahlstrom G, Hallmans G (1990) Age related changes in weight and the concentrations of zinc and copper in the brain of the adult rat. Lab Anim 24(3):240–245PubMedCrossRefGoogle Scholar
  33. 33.
    Litwin T, Gromadzka G, Czlonkowska A (2012) Gender differences in Wilson’s disease. J Neurol Sci 312(1–2):31–35PubMedCrossRefGoogle Scholar
  34. 34.
    Busch C, Bohl J, Ohm TG (1997) Spatial, temporal and numeric analysis of Alzheimer changes in the nucleus coeruleus. Neurobiol Aging 18(4):401–406PubMedCrossRefGoogle Scholar
  35. 35.
    Ohm TG, Busch C, Bohl J (1997) Unbiased estimation of neuronal numbers in the human nucleus coeruleus during aging. Neurobiol Aging 18(4):393–399PubMedCrossRefGoogle Scholar
  36. 36.
    Li X et al (2018) Sex differences in clinical characteristics and brain mri change in patients with wilson’s disease in a chinese population. Front Physiol 9:1429PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zheng W, Monnot AD (2012) Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther 133(2):177–188PubMedCrossRefGoogle Scholar
  38. 38.
    Choi BS, Zheng W (2009) Copper transport to the brain by the blood-brain barrier and blood-CSF barrier. Brain Res 1248:14–21PubMedCrossRefGoogle Scholar
  39. 39.
    Fu X et al (2014) Regulation of copper transport crossing brain barrier systems by Cu-ATPases: effect of manganese exposure. Toxicol Sci 139(2):432–451PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Donsante A et al (2010) Somatic mosaicism in Menkes disease suggests choroid plexus-mediated copper transport to the developing brain. Am J Med Genet A 152A(10):2529–2534PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kaler SG (2011) ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol 7(1):15–29PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Haddad MR et al (2018) Cerebrospinal fluid-directed rAAV9-rsATP7A plus subcutaneous copper histidinate advance survival and outcomes in a menkes disease mouse model. Mol Ther Methods Clin Dev 10:165–178PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Sullivan B et al (2017) Copper accumulation in rodent brain astrocytes: a species difference. J Trace Elem Med Biol 39:6–13PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Sullivan B et al (2017) On the nature of the Cu-rich aggregates in brain astrocytes. Redox Biol 11:231–239PubMedCrossRefGoogle Scholar
  45. 45.
    Schmidt K et al (2018) ATP7A and ATP7B copper transporters have distinct functions in the regulation of neuronal dopamine-beta-hydroxylase. J Biol Chem 293(52):20085–20098PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Xiao T et al (2018) Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system. Nat Chem Biol 14(7):655–663PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zecca L et al (2004) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 101(26):9843–9848PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Pushkar Y et al (2013) Aging results in copper accumulations in glial fibrillary acidic protein-positive cells in the subventricular zone. Aging Cell 12(5):823–832PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Perrin L et al (2017) Zinc and copper effects on stability of tubulin and actin networks in dendrites and spines of hippocampal neurons. ACS Chem Neurosci 8(7):1490–1499PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Maryon EB, Molloy SA, Kaplan JH (2013) Cellular glutathione plays a key role in copper uptake mediated by human copper transporter 1. Am J Physiol Cell Physiol 304(8):C768–C779PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hatori Y et al (2016) Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway. Nat Commun 7:10640PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Schlief ML, Craig AM, Gitlin JD (2005) NMDA receptor activation mediates copper homeostasis in hippocampal neurons. J Neurosci 25(1):239–246PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Jain S, Farias GG, Bonifacino JS (2015) Polarized sorting of the copper transporter ATP7B in neurons mediated by recognition of a dileucine signal by AP-1. Mol Biol Cell 26(2):218–228PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Rosenberg AB et al (2018) Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360(6385):176–182CrossRefGoogle Scholar
  55. 55.
    Hatori Y et al (2012) Functional partnership of the copper export machinery and glutathione balance in human cells. J Biol Chem 287(32):26678–26687PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Grimm J et al (2004) Molecular basis for catecholaminergic neuron diversity. Proc Natl Acad Sci USA 101(38):13891–13896PubMedCrossRefGoogle Scholar
  57. 57.
    Chamberlain SR, Robbins TW (2013) Noradrenergic modulation of cognition: therapeutic implications. J Psychopharmacol 27(8):694–718PubMedCrossRefGoogle Scholar
  58. 58.
    Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10(3):211–223PubMedCrossRefGoogle Scholar
  59. 59.
    Szabadi E (2013) Functional neuroanatomy of the central noradrenergic system. J Psychopharmacol 27(8):659–693PubMedCrossRefGoogle Scholar
  60. 60.
    Schmidt K et al (2019) Localization of the locus coeruleus in the mouse brain. J Vis Exp.  https://doi.org/10.3791/58652 CrossRefPubMedGoogle Scholar
  61. 61.
    Guillamon A, de Blas MR, Segovia S (1988) Effects of sex steroids on the development of the locus coeruleus in the rat. Brain Res 468(2):306–310PubMedCrossRefGoogle Scholar
  62. 62.
    Luque JM et al (1992) Sexual dimorphism of the dopamine-beta-hydroxylase-immunoreactive neurons in the rat locus ceruleus. Brain Res Dev Brain Res 67(2):211–215PubMedCrossRefGoogle Scholar
  63. 63.
    Pinos H et al (2001) The development of sex differences in the locus coeruleus of the rat. Brain Res Bull 56(1):73–78PubMedCrossRefGoogle Scholar
  64. 64.
    Sato M et al (1994) Localization of copper to afferent terminals in rat locus ceruleus, in contrast to mitochondrial copper in cerebellum. J Histochem Cytochem 42(12):1585–1591PubMedCrossRefGoogle Scholar
  65. 65.
    Davies KM et al (2014) Copper pathology in vulnerable brain regions in Parkinson’s disease. Neurobiol Aging 35(4):858–866PubMedCrossRefGoogle Scholar
  66. 66.
    Pamphlett R, Kum SJ (2015) Different populations of human locus ceruleus neurons contain heavy metals or hyperphosphorylated tau: implications for amyloid-beta and tau pathology in Alzheimer’s disease. J Alzheimers Dis 45(2):437–447PubMedCrossRefGoogle Scholar
  67. 67.
    Goldstein DS, Holmes CS, Kaler SG (2009) Relative efficiencies of plasma catechol levels and ratios for neonatal diagnosis of menkes disease. Neurochem Res 34(8):1464–1468PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hoeldtke RD et al (1988) Catecholamine metabolism in kinky hair disease. Pediatr Neurol 4(1):23–26PubMedCrossRefGoogle Scholar
  69. 69.
    Prohaska JR, Bailey WR (1994) Regional specificity in alterations of rat brain copper and catecholamines following perinatal copper deficiency. J Neurochem 63(4):1551–1557PubMedCrossRefGoogle Scholar
  70. 70.
    Miller DS, O’Dell BL (1987) Milk and casein-based diets for the study of brain catecholamines in copper-deficient rats. J Nutr 117(11):1890–1897PubMedCrossRefGoogle Scholar
  71. 71.
    Moshtaghie AA et al (2013) Protective effects of copper against aluminum toxicity on acetylcholinesterase and catecholamine contents of different regions of rat’s brain. Neurol Sci 34(9):1639–1650PubMedCrossRefGoogle Scholar
  72. 72.
    Yang W et al (2016) High dietary copper increases catecholamine concentrations in the hypothalami and midbrains of growing pigs. Biol Trace Elem Res 170(1):115–118PubMedCrossRefGoogle Scholar
  73. 73.
    Gerbasi V, Lutsenko S, Lewis EJ (2003) A mutation in the ATP7B copper transporter causes reduced dopamine beta-hydroxylase and norepinephrine in mouse adrenal. Neurochem Res 28(6):867–873PubMedCrossRefGoogle Scholar
  74. 74.
    Przybylkowski A et al (2013) Neurochemical and behavioral characteristics of toxic milk mice: an animal model of Wilson’s disease. Neurochem Res 38(10):2037–2045PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nyberg P et al (1982) Advanced catecholaminergic disturbances in the brain in a case of Wilson’s disease. Acta Neurol Scand 65(1):71–75PubMedCrossRefGoogle Scholar
  76. 76.
    Saito T et al (1996) Neurochemical and histochemical evidence for an abnormal catecholamine metabolism in the cerebral cortex of the Long-Evans Cinnamon rat before excessive copper accumulation in the brain. Neurosci Lett 216(3):195–198PubMedGoogle Scholar
  77. 77.
    Aschrafi A et al (2019) Angiotensin II mediates the axonal trafficking of tyrosine hydroxylase and dopamine beta-hydroxylase mRNAs and enhances norepinephrine synthesis in primary sympathetic neurons. J Neurochem 150:666–677PubMedCrossRefGoogle Scholar
  78. 78.
    Nevsimalova S et al (2011) Sleep disorders in Wilson’s disease. Eur J Neurol 18(1):184–190PubMedCrossRefGoogle Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  • Svetlana Lutsenko
    • 1
    Email author
  • Clorissa Washington-Hughes
    • 1
  • Martina Ralle
    • 2
  • Katharina Schmidt
    • 1
    • 3
  1. 1.Department of PhysiologyJohns Hopkins Medical InstitutesBaltimoreUSA
  2. 2.Department of Molecular and Medical GeneticsOregon Health and Sciences UniversityPortlandUSA
  3. 3.Boston Consulting Group, Stuttgart and UmgebungStuttgartGermany

Personalised recommendations