Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 24, Issue 7, pp 1127–1134 | Cite as

Properties and reactivity of μ-nitrido-bridged dimetal porphyrinoid complexes: how does ruthenium compare to iron?

  • M. Qadri E. Mubarak
  • Alexander B. Sorokin
  • Sam P. de VisserEmail author
Original Paper
  • 167 Downloads

Abstract

Methane hydroxylation by metal-oxo oxidants is one of the Holy Grails in biomimetic and biotechnological chemistry. The only enzymes known to perform this reaction in Nature are iron-containing soluble methane monooxygenase and copper-containing particulate methane monooxygenase. Furthermore, few biomimetic iron-containing oxidants have been designed that can hydroxylate methane efficiently. Recent studies reported that μ-nitrido-bridged diiron(IV)-oxo porphyrin and phthalocyanine complexes hydroxylate methane to methanol efficiently. To find out whether the reaction rates are enhanced by replacing iron by ruthenium, we performed a detailed computational study. Our work shows that the μ-nitrido-bridged diruthenium(IV)-oxo reacts with methane via hydrogen atom abstraction barriers that are considerably lower in energy (by about 5 kcal mol‒1) as compared to the analogous diiron(IV)-oxo complex. An analysis of the electronic structure implicates similar spin and charge distributions for the diiron(IV)-oxo and diruthenium(IV)-oxo complexes, but the strength of the O‒H bond formed during the reaction is much stronger for the latter. As such a larger hydrogen atom abstraction driving force for the Ru complex than for the Fe complex is found, which should result in higher reactivity in the oxidation of methane.

Graphic abstract

Keywords

Biomimetic models Methane oxidation µ-Nitrido complexes High-valent oxo species Phthalocyanine Porphyrin 

Abbreviations

DFT

Density functional theory

Cpd I

Compound I

BDE

Bond dissociation energy

EA

Electron affinity

IE

Ionization energy

Notes

Acknowledgements

MQEM thanks the Government of Malaysia for a studentship. The EU-COST Network for Bioinorganic Reaction Mechanisms (CM1003) is acknowledged for support. ABS is grateful to ANR, France for support (Grant ANR-16-CE29-0018-01).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

775_2019_1725_MOESM1_ESM.pdf (848 kb)
Supplementary material 1 (PDF 847 kb)

References

  1. 1.
    Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2888.  https://doi.org/10.1021/cr9500500 CrossRefPubMedGoogle Scholar
  2. 2.
    Groves JT (2003) Proc Natl Acad Sci USA 100:3569–3574.  https://doi.org/10.1073/pnas.0830019100 CrossRefPubMedGoogle Scholar
  3. 3.
    Ortiz de Montellano PR (2004) Cytochrome P450: structure, mechanism and biochemistry, 3rd edn. Kluwer Academic, New YorkGoogle Scholar
  4. 4.
    Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947–3980.  https://doi.org/10.1021/cr020443g CrossRefPubMedGoogle Scholar
  5. 5.
    Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Chem Rev 105:2253–2277.  https://doi.org/10.1021/cr0307143 CrossRefPubMedGoogle Scholar
  6. 6.
    Kadish KM, Smith KM, Guilard R (2010) Handbook of porphyrin science. World Scientific Publishing Co., New JerseyGoogle Scholar
  7. 7.
    Ortiz de Montellano PR (2010) Chem Rev 110:932–948.  https://doi.org/10.1021/cr9002193 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Grogan G (2011) Curr Opin Chem Biol 15:241–248.  https://doi.org/10.1016/j.cbpa.2010.11.014 CrossRefPubMedGoogle Scholar
  9. 9.
  10. 10.
    Huang X, Groves JT (2018) Chem Rev 118:2491–2553.  https://doi.org/10.1021/acs.chemrev.7b00373 CrossRefPubMedGoogle Scholar
  11. 11.
    Rittle J, Green MT (2010) Science 330:933–937.  https://doi.org/10.1126/science.1193478 CrossRefPubMedGoogle Scholar
  12. 12.
    Ogliaro F, Cohen S, de Visser SP, Shaik S (2000) J Am Chem Soc 122:12892–12893.  https://doi.org/10.1021/ja005619f CrossRefGoogle Scholar
  13. 13.
    Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Chem Rev 105:2279–2328.  https://doi.org/10.1021/cr030722j CrossRefGoogle Scholar
  14. 14.
    Sorokin AB, Kudrik EV, Bouchu D (2008) Chem Commun.  https://doi.org/10.1039/b804405h CrossRefGoogle Scholar
  15. 15.
    Sorokin AB, Kudrik EV, Alvarez LX, Afanasiev P, Millet JMM, Bouchu D (2010) Catal Today 157:149–154.  https://doi.org/10.1016/j.cattod.2010.02.007 CrossRefGoogle Scholar
  16. 16.
    Sorokin AB (2013) Chem Rev 113:8152–8191.  https://doi.org/10.1021/cr4000072 CrossRefPubMedGoogle Scholar
  17. 17.
    Yamada Y, Morita K, Mihara N, Igawa K, Tomooka K, Tanaka K (2019) New J Chem 43:11477–11482.  https://doi.org/10.1039/c9nj02210d CrossRefGoogle Scholar
  18. 18.
    Mihara N, Yamada Y, Takaya H, Kitagawa Y, Igawa K, Tomooka K, Fujii H, Tanaka K (2019) Chem Eur J 25:3369–3375.  https://doi.org/10.1002/chem.201805580 CrossRefPubMedGoogle Scholar
  19. 19.
    Afanasiev P, Sorokin AB (2016) Acc Chem Res 49:583–593.  https://doi.org/10.1021/acs.accounts.5b00458 CrossRefPubMedGoogle Scholar
  20. 20.
    Kudrik EV, Afanasiev P, Alvarez LX, Dubourdeaux P, Clémancey M, Latour J-M, Blondin G, Bouchu D, Albrieux F, Nefedov SE, Sorokin AB (2012) Nat Chem 4:1024–1029.  https://doi.org/10.1038/nchem.1471 CrossRefPubMedGoogle Scholar
  21. 21.
    Colomban C, Kudrik EV, Afanasiev P, Sorokin AB (2014) J Am Chem Soc 136:11321–11330.  https://doi.org/10.1021/ja505437h CrossRefPubMedGoogle Scholar
  22. 22.
    So S-C, Cheung W-M, Chiu W-H, de Vere-Tucker M, Sung HH-Y, Williams ID, Leung W-H (2019) Dalton Trans 48:8340–8349.  https://doi.org/10.1039/c9dt00244h CrossRefPubMedGoogle Scholar
  23. 23.
    Cheung W-M, Ng W-M, Wong W-H, Lee HK, Sung HH-Y, Williams ID, Leung W-H (2018) Inorg Chem 57:9215–9222.  https://doi.org/10.1021/acs.inorgchem.8b01229 CrossRefPubMedGoogle Scholar
  24. 24.
    Cheung W-M, Chiu W-H, de Vere-Tucker M, Sung HH-Y, Williams ID, Leung W-H (2017) Inorg Chem 56:5680–5687.  https://doi.org/10.1021/acs.inorgchem.7b00281 CrossRefPubMedGoogle Scholar
  25. 25.
    Stuzhin PA, Ivanova SS, Dereven’kov I, Makarov SV, Silaghi-Dumitrescu R, Homborg H (2012) Macroheterocycles 5:175–177.  https://doi.org/10.6060/mhc2012.120360s CrossRefGoogle Scholar
  26. 26.
    Colomban C, Kudrik EV, Sorokin AB (2017) J Porphyrins Phthalocyanines 21:345–353.  https://doi.org/10.1142/S1088424617500274 CrossRefGoogle Scholar
  27. 27.
    İşci Ü, Dumoulin F, Sorokin AB, Ahsen V (2014) Turk J Chem 38:923–949.  https://doi.org/10.3906/kim-1407-47 CrossRefGoogle Scholar
  28. 28.
    İşci Ü, Faponle AS, Afanasiev P, Albrieux F, Briois V, Ahsen V, Dumoulin F, Sorokin AB, de Visser SP (2015) Chem Sci 6:5063–5075.  https://doi.org/10.1039/c5sc01811k CrossRefPubMedGoogle Scholar
  29. 29.
    Quesne MG, Senthilnathan D, Singh D, Kumar D, Maldivi P, Sorokin AB, de Visser SP (2016) ACS Catal 6:2230–2243.  https://doi.org/10.1021/acscatal.5b02720 CrossRefGoogle Scholar
  30. 30.
    Silaghi-Dumitrescu R, Makarov SV, Uta M-M, Dereven’kov IA, Stuzhin PA (2011) New J Chem 35:1140–1145.  https://doi.org/10.1039/c0nj00827c CrossRefGoogle Scholar
  31. 31.
    Ansari M, Vyas N, Ansari A, Rajaraman G (2015) Dalton Trans 44:15232–15243.  https://doi.org/10.1039/C5DT01060H CrossRefPubMedGoogle Scholar
  32. 32.
    Phung QM, Pierloot K (2019) Chem Eur J.  https://doi.org/10.1002/chem.201902766 (in press) CrossRefPubMedGoogle Scholar
  33. 33.
    Mayer JM (2004) Annu Rev Phys Chem 55:363–390CrossRefGoogle Scholar
  34. 34.
    de Visser SP (2010) J Am Chem Soc 132:1087–1097.  https://doi.org/10.1021/ja908340j CrossRefPubMedGoogle Scholar
  35. 35.
    Kumar D, Sastry GN, de Visser SP (2011) Chem Eur J 17:6196–6205.  https://doi.org/10.1002/chem.201003187 CrossRefPubMedGoogle Scholar
  36. 36.
    de Visser SP, Quesne MG, Martin B, Comba P, Ryde U (2014) Chem Commun 50:262–282.  https://doi.org/10.1039/c3cc47148a CrossRefGoogle Scholar
  37. 37.
    Kumar S, Faponle AS, Barman P, Vardhaman AK, Sastri CV, Kumar D, de Visser SP (2014) J Am Chem Soc 136:17102–17115.  https://doi.org/10.1021/ja508403w CrossRefPubMedGoogle Scholar
  38. 38.
    Frisch MJ (2013) Gaussian-09, revision C.02. Gaussian Inc, Wallingford CTGoogle Scholar
  39. 39.
    Becke AD (1993) J Chem Phys 98:5648–5652.  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  40. 40.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789.  https://doi.org/10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  41. 41.
    Becke AD (1988) Phys Rev A 38:3098–3100.  https://doi.org/10.1103/PhysRevA.38.3098 CrossRefGoogle Scholar
  42. 42.
    Perdew JP (1986) Phys Rev B 33:8822–8824.  https://doi.org/10.1103/PhysRevB.33.8822 CrossRefGoogle Scholar
  43. 43.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283.  https://doi.org/10.1063/1.448799 CrossRefGoogle Scholar
  44. 44.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728.  https://doi.org/10.1063/1.1674902 CrossRefGoogle Scholar
  45. 45.
    Cantú Reinhard FG, Faponle AS, de Visser SP (2016) J Phys Chem A 120:9805–9814.  https://doi.org/10.1021/acs.jpca.6b09765 CrossRefPubMedGoogle Scholar
  46. 46.
    Cantú Reinhard FG, Barman P, Mukherjee G, Kumar J, Kumar D, Kumar D, Sastri CV, de Visser SP (2017) J Am Chem Soc 139:18328–18338.  https://doi.org/10.1021/jacs.7b10033 CrossRefPubMedGoogle Scholar
  47. 47.
    Vardhaman AK, Sastri CV, Kumar D, de Visser SP (2011) Chem Commun 47:11044–11046.  https://doi.org/10.1039/c1cc13775a CrossRefGoogle Scholar
  48. 48.
    Cheaib K, Mubarak MQE, Sénéchal-David K, Herrero C, Guillot R, Clémancey M, Latour J-M, de Visser SP, Mahy J-P, Banse F, Avenier F (2019) Angew Chem Int Ed 58:854–858.  https://doi.org/10.1002/anie.201812724 CrossRefGoogle Scholar
  49. 49.
    Barman P, Cantú Reinhard FG, Bagha UK, Kumar D, Sastri CV, de Visser SP (2019) Angew Chem Int Ed 58:10639–10643.  https://doi.org/10.1002/anie.201905416 CrossRefGoogle Scholar
  50. 50.
    Colomban C, Tobing AH, Mukherjee G, Sastri CV, Sorokin AB, de Visser SP (2019) Chem Eur J. 25:1.  https://doi.org/10.1002/chem.201902934 CrossRefGoogle Scholar
  51. 51.
    Hirao H, Kumar D, Que L Jr, Shaik S (2006) J Am Chem Soc 128:8590–8606.  https://doi.org/10.1021/ja061609o CrossRefPubMedGoogle Scholar
  52. 52.
    de Visser SP (2006) J Am Chem Soc 128:15809–15818.  https://doi.org/10.1021/ja065365j CrossRefPubMedGoogle Scholar
  53. 53.
    Sharma PK, de Visser SP, Ogliaro F, Shaik S (2003) J Am Chem Soc 125:2291–2300.  https://doi.org/10.1021/ja0282487 CrossRefPubMedGoogle Scholar
  54. 54.
    Man W-L, Xie J, Pan Y, Lam WWY, Kwong H-K, Ip K-W, Yiu S-M, Lau K-C, Lau T-C (2013) J Am Chem Soc 135:5533–5536.  https://doi.org/10.1021/ja401553d CrossRefPubMedGoogle Scholar
  55. 55.
    Guo Z, Guan X, Huang J-S, Tsui W-M, Lin Z, Che C-M (2013) Chem Eur J 19:11320–11331.  https://doi.org/10.1002/chem.201300021 CrossRefPubMedGoogle Scholar
  56. 56.
    Dhuri SN, Seo MS, Lee Y-M, Hirao H, Wang Y, Nam W, Shaik S (2008) Angew Chem Int Ed 47:3356–3359CrossRefGoogle Scholar
  57. 57.
    Ogliaro F, Harris N, Cohen S, Filatov M, de Visser SP, Shaik S (2000) J Am Chem Soc 122:8977–8989.  https://doi.org/10.1021/ja991878x CrossRefGoogle Scholar
  58. 58.
    de Visser SP, Kumar D, Cohen S, Shacham R, Shaik S (2004) J Am Chem Soc 126:8362–8363.  https://doi.org/10.1021/ja048528h CrossRefGoogle Scholar
  59. 59.
    Shaik S, Kumar D, de Visser SP (2008) J Am Chem Soc 130:10128–10140.  https://doi.org/10.1021/ja8019615 CrossRefPubMedGoogle Scholar
  60. 60.
    Singh D, Kumar D, de Visser SP (2015) Int J Sc Technol 1:26–40.  https://doi.org/10.18091/ijsts.v1i2.9516 CrossRefGoogle Scholar
  61. 61.
    Yoshizawa K (2006) Acc Chem Res 39:375–382.  https://doi.org/10.1021/ar050194t CrossRefPubMedGoogle Scholar
  62. 62.
    Rosa A, Ricciardi G (2012) Inorg Chem 51:9833–9845.  https://doi.org/10.1021/ic301232r CrossRefPubMedGoogle Scholar
  63. 63.
    Tang H, Guan J, Zhang L, Liu H, Huang X (2012) Phys Chem Chem Phys 14:12863–12874.  https://doi.org/10.1039/c2cp42423a CrossRefPubMedGoogle Scholar
  64. 64.
    Yang T, Quesne MG, Neu HM, Cantú Reinhard FG, Goldberg DP, de Visser SP (2016) J Am Chem Soc 138:12375–12386.  https://doi.org/10.1021/jacs.6b05027 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Sainna MA, Sil D, Sahoo D, Martin B, Rath SP, Comba P, de Visser SP (2015) Inorg Chem 54:1919–1930.  https://doi.org/10.1021/ic502803b CrossRefPubMedGoogle Scholar
  66. 66.
    Latifi R, Bagherzadeh M, de Visser SP (2009) Chem Eur J 15:6651–6662.  https://doi.org/10.1002/chem.200900211 CrossRefPubMedGoogle Scholar
  67. 67.
    Latifi R, Valentine JS, Nam W, de Visser SP (2012) Chem Commun 48:3491–3493.  https://doi.org/10.1039/c2cc30365e CrossRefGoogle Scholar
  68. 68.
    de Visser SP, Ogliaro F, Shaik S (2001) Angew Chem Int Ed 40:2871–2874CrossRefGoogle Scholar
  69. 69.
    Timmins A, Quesne MG, Borowski T, de Visser SP (2018) ACS Catal 8:8685–8698.  https://doi.org/10.1021/acscatal.8b01673 CrossRefGoogle Scholar
  70. 70.
    Cho K-B, Hirao H, Shaik S, Nam W (2016) Chem Soc Rev 45:1197–1210CrossRefGoogle Scholar
  71. 71.
    Sainna MA, Kumar S, Kumar D, Fornarini S, Crestoni ME, de Visser SP (2015) Chem Sci 6:1516–1529.  https://doi.org/10.1039/C4SC02717 CrossRefPubMedGoogle Scholar
  72. 72.
    Cantú Reinhard FG, Sainna MA, Upadhyay P, Balan GA, Kumar D, Fornarini S, Crestoni ME, de Visser SP (2016) Chem Eur J 22:18608–18619.  https://doi.org/10.1002/chem.201604361 CrossRefPubMedGoogle Scholar
  73. 73.
    Kaczmarek MA, Malhotra A, Balan GA, Timmins A, de Visser SP (2018) Chem Eur J 24:5293–5302.  https://doi.org/10.1002/chem.201704688 CrossRefPubMedGoogle Scholar
  74. 74.
    NIST Chemistry WebBook, NIST Standard Reference Database, Number 69; Linstrom PJ, Mallard WG (2016) National Institute of Standards and Technology: Gaithersburg, MD. http://webbook.nist.gov. Accessed 1 July 2019

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  • M. Qadri E. Mubarak
    • 1
  • Alexander B. Sorokin
    • 2
  • Sam P. de Visser
    • 1
    Email author
  1. 1.Department of Chemical Engineering and Analytical Science, Manchester Institute of BiotechnologyThe University of ManchesterManchesterUK
  2. 2.Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON), UMR 5256, CNRS, Université Lyon 1Villeurbanne CedexFrance

Personalised recommendations