Visualization of hydrogen polysulfides in living cells and in vivo via a near-infrared fluorescent probe

  • Xiaoqing WangEmail author
  • Qian Sun
  • Liming Zhao
  • Shuwen Gong
  • Li XuEmail author
Original Paper


Hydrogen polysulfides (H2Sn, n > 1), as the oxidized forms of H2S, have attracted increasing attention these years due to their involvement in signaling transduction and cytoprotective processes. It is necessary to detect H2Sn in living systems for the study of their functions. In this work, we report a BODIPY-based near-infrared emitting fluorescence probe NIR-PHS1, with “turn-on” response, rapid response rate (within 10 min), outstanding selectivity and excellent sensitivity (detection limit = 12 nM) response towards H2Sn. The probe was successfully applied to the visualizing of endogenous H2Sn in living cells. Moreover, it can be used for near-infrared in vivo imaging of H2Sn in living mice. Therefore, NIR-PHS1 could be a potential imaging tool to study the biological roles of H2Sn in living systems.


Fluorescent sensing and imaging Hydrogen polysulfides BODIPY Near-infrared 



This work was financially supported by the National Natural Science Foundation of China (21971115, 21501085) and Key University Science Research Project of Jiangsu Province (17KJA150004).

Supplementary material

775_2019_1718_MOESM1_ESM.pdf (976 kb)
Supplementary material 1 (PDF 976 kb)


  1. 1.
    Morita T, Perrella MA, Lee ME, Kourembanas S (1995) Proc Natl Acad Sci 92:1475–1479CrossRefGoogle Scholar
  2. 2.
    Szabo C (2007) Nat Rev Drug Discov 6:917–935CrossRefGoogle Scholar
  3. 3.
    Murad F (1999) Angew Chem Int Ed 38:1856–1868CrossRefGoogle Scholar
  4. 4.
    Zhang H, Xu L, Chen W, Huang J, Huang C, Sheng J, Song X (2018) ACS Sens 3:2513–2517CrossRefGoogle Scholar
  5. 5.
    Zhang H, Xu L, Chen W, Huang J, Huang C, Sheng J, Song X (2019) Anal Chem 91:1904–1911CrossRefGoogle Scholar
  6. 6.
    Martelli A, Testai L, Marino A, Breschi MC, Da Settimo F, Calderone V (2012) Curr Med Chem 19:3325–3336CrossRefGoogle Scholar
  7. 7.
    Kimura H (2014) Antioxid Redox Sign 20:783–793CrossRefGoogle Scholar
  8. 8.
    Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS (2010) Aging Cell 9:135–146CrossRefGoogle Scholar
  9. 9.
    Eto K, Asada T, Arima K, Makifuchi T, Kimura H (2002) Biochem Biophys Res Commun 293:1485–1488CrossRefGoogle Scholar
  10. 10.
    Kamoun P, Belardinelli MC, Chabli A, Lallouchi K, Chadefaux-Vekemans B (2003) Am J Med Genet A 116A:310–311CrossRefGoogle Scholar
  11. 11.
    Fiorucci S, Antonelli E, Mencarelli A, Orlandi S, Renga B, Rizzo G, Morelli A et al (2005) Hepatology 42:539–548CrossRefGoogle Scholar
  12. 12.
    Kimura H (2015) Antioxid Redox Sign 22:362–376CrossRefGoogle Scholar
  13. 13.
    Nagy P, Winterbourn CC (2010) Chem Res Toxicol 23:1541–1543CrossRefGoogle Scholar
  14. 14.
    Predmore BL, Lefer DJ, Gojon G (2012) Antioxid Redox Signal 17:119–140CrossRefGoogle Scholar
  15. 15.
    Kimura H (2013) Neurochem Int 63:492–497CrossRefGoogle Scholar
  16. 16.
    Kimura Y, Mikami Y, Osumi K, Tsugane M, Oka J, Kimura H (2013) FASEB J 27:2451–2457CrossRefGoogle Scholar
  17. 17.
    Cortese-Krott MM, Kuhnle GG, Dyson A, Fernandez BO, Grman M, DuMond JF, Feelisch M et al (2015) Proc Natl Acad Sci USA 112:E4651–E4660CrossRefGoogle Scholar
  18. 18.
    Kimura H (2015) Nitric Oxide 47:S6CrossRefGoogle Scholar
  19. 19.
    Miyamoto R, Koike S, Takano Y, Shibuya N, Kimura Y, Hanaoka K, Kimura H et al (2017) Sci Rep 7:45995CrossRefGoogle Scholar
  20. 20.
    Greiner R, Palinkas Z, Basell K, Becher D, Antelmann H, Nagy P, Dick TP (2013) Antioxid Redox Sign 19:1749–1765CrossRefGoogle Scholar
  21. 21.
    Paulsen CE, Carroll KS (2013) Chem Rev 113:4633–4679CrossRefGoogle Scholar
  22. 22.
    Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Akaike T et al (2014) Proc Natl Acad Sci USA 111:7606–7611CrossRefGoogle Scholar
  23. 23.
    Ono K, Akaike T, Sawa T, Kumagai Y, Wink DA, Tantillo DJ, Fukuto JM et al (2014) Free Radical Biol Med 77:82–94CrossRefGoogle Scholar
  24. 24.
    Mishanina TV, Libiad M, Banerjee R (2015) Nat Chem Biol 11:457–464CrossRefGoogle Scholar
  25. 25.
    Toohey J, Cooper A (2014) Molecules 19:12789–12813CrossRefGoogle Scholar
  26. 26.
    Kabil O, Motl N, Banerjee R (2014) Biochim Biophys Acta 1844:1355–1366CrossRefGoogle Scholar
  27. 27.
    Peng H, Zhang Y, Palmer LD, Kehl-Fie TE, Skaar EP, Trinidad JC, Giedroc DP (2017) ACS Infect Dis 3:744–755CrossRefGoogle Scholar
  28. 28.
    Debiemme-Chouvy C, Wartelle C, Sauvage F-X (2004) J Phys Chem B 108:18291–18296CrossRefGoogle Scholar
  29. 29.
    Yang Z, Cao J, He Y, Yang JH, Kim T, Peng X, Kim JS (2014) Chem Soc Rev 43:4563–4601CrossRefGoogle Scholar
  30. 30.
    Liu C, Chen W, Shi W, Peng B, Zhao Y, Ma H, Xian M (2014) J Am Chem Soc 136:7257–7260CrossRefGoogle Scholar
  31. 31.
    Gao M, Yu F, Chen H, Chen L (2015) Anal Chem 87:3631–3638CrossRefGoogle Scholar
  32. 32.
    Gao M, Zhang X, Wang Y, Liu Q, Yu F, Huang Y et al (2019) Anal Chem 91:7774–7781CrossRefGoogle Scholar
  33. 33.
    Huang Y, Yu F, Wang J, Chen L (2016) Anal Chem 88:4122–4129CrossRefGoogle Scholar
  34. 34.
    Li K-B, Chen F-Z, Yin Q-H, Zhang S, Shi W, Han D-M (2018) Sens Actuators B 254:222–226CrossRefGoogle Scholar
  35. 35.
    Li K-B, Chen F-Z, Zhang S, Shi W, Han D-M, Cai C et al (2017) Anal Methods 9:6443–6447CrossRefGoogle Scholar
  36. 36.
    Yu F, Gao M, Li M, Chen L (2015) Biomaterials 63:93–101CrossRefGoogle Scholar
  37. 37.
    Chen W, Yue X, Sheng J, Li W, Zhang L, Su W et al (2018) Sens Actuators B 258:125–132CrossRefGoogle Scholar
  38. 38.
    Chen W, Yue X, Zhang H, Li W, Zhang L, Xiao Q et al (2017) Anal Chem 89:12984–12991CrossRefGoogle Scholar
  39. 39.
    Frangioni J (2003) Curr Opin Chem Biol 7:626–634CrossRefGoogle Scholar
  40. 40.
    Gao M, Wang R, Yu F, You J, Chen L (2015) Analyst 140:3766–3772CrossRefGoogle Scholar
  41. 41.
    Ma J, Fan J, Li H, Yao Q, Xu F, Wang J, Peng X (2017) J Mater Chem B 5:2574–2579CrossRefGoogle Scholar
  42. 42.
    Coskun A, Deniz E, Akkaya EU (2005) Org Lett 7:5187–5189CrossRefGoogle Scholar
  43. 43.
    Li X, Tao RR, Hong LJ, Cheng J, Jiang Q, Lu YM et al (2015) J Am Chem Soc 137:12296–12303CrossRefGoogle Scholar
  44. 44.
    Takata T, Saeki D, Makita Y, Yamada N, Kihara N (2003) Inorg Chem 42:3712–3714CrossRefGoogle Scholar
  45. 45.
    Frisch MJ et al (2004) Gaussian03, Revision C.02. Gaussian Inc., WallingfordGoogle Scholar
  46. 46.
    Yang J, Fan Y, Cai F, Xu X, Fu B, Wang S et al (2019) Dyes Pigments 164:105–111CrossRefGoogle Scholar
  47. 47.
    Yang J, Rousselin Y, Bucher L, Desbois N, Bolze F, Xu H-J et al (2018) ChemPlusChem 83:838–844CrossRefGoogle Scholar
  48. 48.
    Zhao L, Sun Q, Sun C, Zhang C, Duan W, Gong S et al (2018) J Mater Chem B 6:7015–7020CrossRefGoogle Scholar
  49. 49.
    Dale TJ, Rebek J (2006) J Am Chem Soc 128:4500–4501CrossRefGoogle Scholar
  50. 50.
    Chen W, Rosser EW, Matsunaga T, Pacheco A, Akaike T, Xian M (2015) Angew Chem Int Ed 54:13961–13965CrossRefGoogle Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  1. 1.College of ScienceNanjing Forestry UniversityNanjingChina
  2. 2.School of Chemistry and Chemical EngineeringLiaocheng UniversityLiaochengChina
  3. 3.Institute of Material Physics and ChemistryNanjing Forestry UniversityNanjingChina

Personalised recommendations