Advertisement

Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action

  • Parveen Nisar
  • Nasir Ali
  • Lubna Rahman
  • Muhammad AliEmail author
  • Zabta Khan Shinwari
Mini Review
  • 16 Downloads

Abstract

Increasing antimicrobial resistance is a clinical crisis worldwide. Recent progress in the field of green synthesis has fascinated scientists and researchers to explore its potentials against pathogenic microbes. Bioinspired-metal-based nanoparticles (silver, copper, gold, zinc, etc.) have been reported to be tested against both Gram-positive and Gram-negative bacteria such as B. subtilis, E. coli, Staphylococcus aureus, etc., as well as some pathogenic fungi including A. niger, F. oxysporum, A. fumigatus, etc., and are testified to exhibit inhibitory effects against pathogenic microbes. The possible modes of action of these metal nanoparticles include: (a) excess production of reactive oxygen species inside microbes; (b) disruption of vital enzymes in respiratory chain via damaging microbial plasma membranes; (c) accumulation of metal ions in microbial membranes; (d) electrostatic attraction between metal nanoparticles and microbial cells which disrupt metabolic activities; and (e) inhibition of microbial proteins/enzymes by increased production of H2O2. Although these pathways are interconnected, information on potential mechanism of most of these biogenic nanoparticles is still limited. Further exploration of these mechanisms could help in tackling the burning issue of antibiotics resistance.

Keywords

Green synthesis Metal nanoparticles Antimicrobial activity Antimicrobial mode of action 

Notes

References

  1. 1.
    Thakkar KN, Mhatre SS, Parikh RY (2010) Nanomed Nanotechnol Biol Med 6:257–262CrossRefGoogle Scholar
  2. 2.
    Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Small 7:425–443CrossRefGoogle Scholar
  3. 3.
    Parveen K, Banse V, Ledwani L (2016) AIP conference proceedings. AIP Publishing, New York, p 020048Google Scholar
  4. 4.
    Li X, Xu H, Chen Z-S, Chen G (2011) J Nanomater 2011(270974):1–16Google Scholar
  5. 5.
    Gao W, Thamphiwatana S, Angsantikul P, Zhang L (2014) Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:532–547CrossRefGoogle Scholar
  6. 6.
    Grass G, Rensing C, Solioz M (2011) Appl Environ Microbiol 77:1541–1547CrossRefGoogle Scholar
  7. 7.
    Wilson BA, Salyers AA, Whitt DD, Winkler ME (2011) Bacterial pathogenesis: a molecular approach. American Society for Microbiology (ASM), Washington, D.C.CrossRefGoogle Scholar
  8. 8.
    Kaviyarasu K, Geetha N, Kanimozhi K, Magdalane CM, Sivaranjani S, Ayeshamariam A, Maaza M (2017) Mater Sci Eng C 74:325–333CrossRefGoogle Scholar
  9. 9.
    Kaviyarasu K, Magdalane CM, Kanimozhi K, Kennedy J, Siddhardha B, Reddy ES, Mola GT (2017) J Photochem Photobiol B 173:466–475CrossRefGoogle Scholar
  10. 10.
    Kaviyarasu K, Kanimozhi K, Matinise N, Magdalane CM, Mola GT, Kennedy J, Maaza M (2017) Mater Sci Eng C 76:1012–1025CrossRefGoogle Scholar
  11. 11.
    Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) J Mater Sci 43:5115–5122CrossRefGoogle Scholar
  12. 12.
    Lakshmanan G, Sathiyaseelan A, Kalaichelvan P, Murugesan K (2018) Karbala Int J Mod Sci 4:61–68CrossRefGoogle Scholar
  13. 13.
    Sur UK, Ankamwar B, Karmakar S, Halder A, Das P (2018) Mater Today Proc 5:2321–2329CrossRefGoogle Scholar
  14. 14.
    Ojo OA, Oyinloye BE, Ojo AB, Afolabi OB, Peters OA, Olaiya O, Fadaka A, Jonathan J, Osunlana O (2017) J Bionanosci 11:292–296CrossRefGoogle Scholar
  15. 15.
    Singh P, Kim YJ, Yang DC (2016) Artif Cells Nanomed Biotechnol 44:1949–1957CrossRefGoogle Scholar
  16. 16.
    Ali K, Dwivedi S, Azam A, Saquib Q, Al-Said MS, Alkhedhairy AA, Musarrat J (2016) J Colloid Interface Sci 472:145–156CrossRefGoogle Scholar
  17. 17.
    Ibrahim HM (2015) J Radiat Res Appl Sci 8:265–275CrossRefGoogle Scholar
  18. 18.
    Gomathi M, Rajkumar P, Prakasam A, Ravichandran K (2017) Resour Effic Technol 3:280–284CrossRefGoogle Scholar
  19. 19.
    Narendhran S, Sivaraj R (2016) Bull Mater Sci 39:1–5CrossRefGoogle Scholar
  20. 20.
    Ahmed S, Ahmad M, Swami BL, Ikram S (2016) J Radiat Res Appl Sci 9:1–7CrossRefGoogle Scholar
  21. 21.
    Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S, Das S, Dey SK, Das D, Roy S (2017) Arab J Chem 10:862–876CrossRefGoogle Scholar
  22. 22.
    Escárcega-González CE, Garza-Cervantes J, Vázquez-Rodríguez A, Montelongo-Peralta LZ, Treviño-González M, Castro EDB, Saucedo-Salazar E, Morales RC, Soto DR, González FT (2018) Int J Nanomed 13:2349CrossRefGoogle Scholar
  23. 23.
    Yasir M, Singh J, Tripathi MK, Singh P, Shrivastava R (2018) Pharmacogn Mag 13:S840Google Scholar
  24. 24.
    Krishnaraj C, Jagan E, Rajasekar S, Selvakumar P, Kalaichelvan P, Mohan N (2010) Colloids Surf B 76:50–56CrossRefGoogle Scholar
  25. 25.
    Abdel-Raouf N, Al-Enazi NM, Ibraheem IB (2017) Arab J Chem 10:S3029–S3039CrossRefGoogle Scholar
  26. 26.
    Bindhu M, Umadevi M (2014) Mater Lett 120:122–125CrossRefGoogle Scholar
  27. 27.
    Kumar PV, Shameem U, Kollu P, Kalyani R, Pammi S (2015) BioNanoScience 5:135–139CrossRefGoogle Scholar
  28. 28.
    Naika HR, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D, Nagabhushana H (2015) J Taibah Univ Sci 9:7–12CrossRefGoogle Scholar
  29. 29.
    Shende S, Ingle AP, Gade A, Rai M (2015) World J Microbiol Biotechnol 31:865–873CrossRefGoogle Scholar
  30. 30.
    Dobrucka R, Długaszewska J (2016) Saudi J Biol Sci 23:517–523CrossRefGoogle Scholar
  31. 31.
    Sivaraj R, Rahman PK, Rajiv P, Narendhran S, Venckatesh R (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 129:255–258CrossRefGoogle Scholar
  32. 32.
    Elumalai K, Velmurugan S (2015) Appl Surf Sci 345:329–336CrossRefGoogle Scholar
  33. 33.
    Sundrarajan M, Ambika S, Bharathi K (2015) Adv Powder Technol 26:1294–1299CrossRefGoogle Scholar
  34. 34.
    Gunalan S, Sivaraj R, Rajendran V (2012) Prog Nat Sci Mater Int 22:693–700CrossRefGoogle Scholar
  35. 35.
    Jamdagni P, Khatri P, Rana J (2018) J King Saud Univ Sci 30:168–175CrossRefGoogle Scholar
  36. 36.
    Vijayakumar S, Vinoj G, Malaikozhundan B, Shanthi S, Vaseeharan B (2015) Spectrochim Acta Part A Mol Biomol Spectrosc 137:886–891CrossRefGoogle Scholar
  37. 37.
    Chandirika JU, Annadurai G (2018) Glob J Biotechnol Biochem 13:07–11Google Scholar
  38. 38.
    Besinis A, De Peralta T, Handy RD (2014) Nanotoxicology 8:1–16CrossRefGoogle Scholar
  39. 39.
    Lemire JA, Harrison JJ, Turner RJ (2013) Nat Rev Microbiol 11:371CrossRefGoogle Scholar
  40. 40.
    Gold K, Slay B, Knackstedt M, Gaharwar AK (2018) Adv Ther 1:1700033CrossRefGoogle Scholar
  41. 41.
    Jeon H-J, Yi S-C, Oh S-G (2003) Biomaterials 24:4921–4928CrossRefGoogle Scholar
  42. 42.
    Klueh U, Wagner V, Kelly S, Johnson A, Bryers J (2000) J Biomed Mater Res 53:621–63143CrossRefGoogle Scholar
  43. 43.
    Raja A, Ashokkumar S, Marthandam RP, Jayachandiran J, Khatiwada CP, Kaviyarasu K, Swaminathan M (2018) J Photochem Photobiol B Biol 181:53–58CrossRefGoogle Scholar
  44. 44.
    Magdalane CM, Kaviyarasu K, Raja A, Arularasu MV, Mola GT, Isaev AB, Maaza M (2018) J Photochem Photobiol B 185:275–282CrossRefGoogle Scholar
  45. 45.
    Amanulla AM, Shahina SJ, Sundaram R, Magdalane CM, Kaviyarasu K, Letsholathebe D, Maaza M (2018) J Photochem Photobiol B 183:233–241CrossRefGoogle Scholar
  46. 46.
    Roy S, Das T (2015) J Appl Spectrosc 82:598–606CrossRefGoogle Scholar
  47. 47.
    Kumar DA, Palanichamy V, Roopan SM (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 127:168–171.  https://doi.org/10.1016/j.saa.2014.02.058 CrossRefGoogle Scholar
  48. 48.
    Ahmad N, Sharma S, Singh V, Shamsi S, Fatma A, Mehta B (2011) Biotechnol Res Int 2011(454090):1–8CrossRefGoogle Scholar
  49. 49.
    Anbazhagan S, Azeez S, Morukattu G, Rajan R, Venkatesan K, Thangavelu KP (2017) 3 Biotech 7:333CrossRefGoogle Scholar
  50. 50.
    Nanda A, Saravanan M (2009) Nanomed Nanotechnol Biol Med 5:452–456.  https://doi.org/10.1016/j.nano.2009.01.012 CrossRefGoogle Scholar
  51. 51.
    Maiti S, Krishnan D, Barman G, Ghosh SK, Laha JK (2014) J Anal Sci Technol 5:40CrossRefGoogle Scholar
  52. 52.
    Xia Z-K, Ma Q-H, Li S-Y, Zhang D-Q, Cong L, Tian Y-L, Yang R-Y (2016) J Microbiol Immunol Infect 49:182–188CrossRefGoogle Scholar
  53. 53.
    Prabhu S, Poulose EK (2012) Int Nano Lett 2:32CrossRefGoogle Scholar
  54. 54.
    Sondi I, Salopek-Sondi B (2004) J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  55. 55.
    Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J (2006) Spectrochim Acta Part A Mol Biomol Spectrosc 63:189–19157CrossRefGoogle Scholar
  56. 56.
    Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S, Roy S (2017) Arab J Chem 10(6):862–876CrossRefGoogle Scholar
  57. 57.
    Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Nanotechnology 18:225103CrossRefGoogle Scholar
  58. 58.
    Kim J, Lee J, Kwon S, Jeong S (2009) J Nanosci Nanotechnol 9:1098–1102CrossRefGoogle Scholar
  59. 59.
    Du H, Lo T-M, Sitompul J, Chang MW (2012) Biochem Biophys Res Commun 424:657–662CrossRefGoogle Scholar
  60. 60.
    Huang S-H (2006) Clin Chim Acta 373:139–143CrossRefGoogle Scholar
  61. 61.
    MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Colloids Surf B Biointerfaces 85:360–365.  https://doi.org/10.1016/j.colsurfb.2011.03.009 CrossRefGoogle Scholar
  62. 62.
    Vijayan R, Joseph S, Mathew B (2018) Artif Cells Nanomed Biotechnol 46:861–871CrossRefGoogle Scholar
  63. 63.
    Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Ind Crops Prod 45:423–429CrossRefGoogle Scholar
  64. 64.
    Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012) Biomaterials 33:2327–2333CrossRefGoogle Scholar
  65. 65.
    Carbon J, David H, Studier MH (1968) Science 161:1146–1147CrossRefGoogle Scholar
  66. 66.
    Zharova TV, Vinogradov AD (2004) J Biol Chem 279:12319–12324CrossRefGoogle Scholar
  67. 67.
    Wani IA, Ahmad T (2013) Colloids Surf B 101:162–170CrossRefGoogle Scholar
  68. 68.
    Ahmad T, Wani IA, Lone IH, Ganguly A, Manzoor N, Ahmad A, Al-Shihri AS (2013) Mater Res Bull 48(1):12–20CrossRefGoogle Scholar
  69. 69.
    Tan YN, Lee KH, Su X (2011) Anal Chem 83:4251–4257CrossRefGoogle Scholar
  70. 70.
    Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KB (2012) Spectrochim Acta Part A Mol Biomol Spectrosc 90:78–84CrossRefGoogle Scholar
  71. 71.
    Szabó T, Németh J, Dékány I (2003) Colloids Surf A 230:23–35CrossRefGoogle Scholar
  72. 72.
    Espitia PJP, Soares NDFF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Food Bioprocess Technol 5:1447–1464CrossRefGoogle Scholar
  73. 73.
    Neethirajan S, Jayas DS (2011) Food Bioprocess Technol 4:39–47CrossRefGoogle Scholar
  74. 74.
    Jones N, Ray B, Ranjit KT, Manna AC (2008) FEMS Microbiol Lett 279:71–76CrossRefGoogle Scholar
  75. 75.
    Jin T, Gurtler J (2011) J Appl Microbiol 110:704–712CrossRefGoogle Scholar
  76. 76.
    Seil JT, Webster TJ (2011) Acta Biomater 7:2579–2584CrossRefGoogle Scholar
  77. 77.
    Vicentini DS, Smania A Jr, Laranjeira MC (2010) Mater Sci Eng C 30:503–508CrossRefGoogle Scholar
  78. 78.
    Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margel S (2011) Colloids Surf A 374:1–8CrossRefGoogle Scholar
  79. 79.
    Rajiv P, Rajeshwari S, Venckatesh R (2013) Spectrochim Acta Part A Mol Biomol Spectrosc 112:384–387CrossRefGoogle Scholar
  80. 80.
    Patel S (2011) 3 Biotech 1(1):1–9CrossRefGoogle Scholar
  81. 81.
    He L, Liu Y, Mustapha A, Lin M (2011) Microbiol Res 166:207–215CrossRefGoogle Scholar
  82. 82.
    Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Appl Environ Microbiol 77:2325–2331CrossRefGoogle Scholar
  83. 83.
    Abbasi BH, Anjum S, Hano C (2017) RSC Adv 7(26):15931–15943CrossRefGoogle Scholar
  84. 84.
    Huang Z, Cui F, Kang H, Chen J, Zhang X, Xia C (2008) Chem Mater 20:5090–5099CrossRefGoogle Scholar
  85. 85.
    Yehia RS, Ahmed OF (2013) Afr J Microbiol Res 7:1917–1923CrossRefGoogle Scholar
  86. 86.
    Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Chem Mater 17:5255–5262CrossRefGoogle Scholar
  87. 87.
    Lee H-J, Lee G, Jang NR, Yun JH, Song JY, Kim BS (2011) Nanotechnology 1:371–374Google Scholar
  88. 88.
    Ahamed M, Alhadlaq HA, Khan M, Karuppiah P, Al-Dhabi NA (2014) J Nanomater 2014:17CrossRefGoogle Scholar
  89. 89.
    Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Int J Antimicrob Agents 33:587–590CrossRefGoogle Scholar
  90. 90.
    Quirós J, Gonzalo S, Jalvo B, Boltes K, Perdigón-Melón JA, Rosal R (2016) Sci Total Environ 563:912–920CrossRefGoogle Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  • Parveen Nisar
    • 1
  • Nasir Ali
    • 1
  • Lubna Rahman
    • 1
  • Muhammad Ali
    • 1
    Email author
  • Zabta Khan Shinwari
    • 1
    • 2
    • 3
  1. 1.Molecular Systematics and Applied Ethnobotany Laboratory, Department of BiotechnologyQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.National Council for Tibb (NCT)IslamabadPakistan
  3. 3.Pakistan Academy of SciencesIslamabadPakistan

Personalised recommendations