Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 24, Issue 6, pp 793–807 | Cite as

Radical S-adenosylmethionine maquette chemistry: Cx3Cx2C peptide coordinated redox active [4Fe–4S] clusters

  • Amanda Galambas
  • Jacquelyn Miller
  • Morgan Jones
  • Elizabeth McDaniel
  • Molly Lukes
  • Hope Watts
  • Valérie Copié
  • Joan B. Broderick
  • Robert K. SzilagyiEmail author
  • Eric M. ShepardEmail author
Original Paper
Part of the following topical collections:
  1. Joan Broderick: Papers in Celebration of Her 2019 ACS Alfred Bader Award in Bioinorganic or Bioorganic Chemistry

Abstract

The synthesis and characterization of short peptide-based maquettes of metalloprotein active sites facilitate an inquiry into their structure/function relationships and evolution. The [4Fe–4S]-maquettes of bacterial ferredoxin metalloproteins (Fd) have been used in the past to engineer redox active centers into artificial metalloenzymes. The novelty of our study is the application of maquettes to the superfamily of [4Fe–4S] cluster and S-adenosylmethionine-dependent radical metalloenzymes (radical SAM). The radical SAM superfamily enzymes contain site-differentiated, redox active [4Fe–4S] clusters coordinated to Cx3Cx2C or related motifs, which is in contrast to the Cx2Cx2C motif found in bacterial ferredoxins (Fd). Under an optimized set of experimental conditions, a high degree of reconstitution (80–100%) was achieved for both radical SAM- and Fd-maquettes. Negligible chemical speciation was observed for all sequences, with predominantly [4Fe–4S]2+ for the ‘as-reconstituted’ state. However, the reduction of [4Fe–4S]2+-maquettes provides low conversion (7–17%) to the paramagnetic [4Fe–4S]+ state, independent of either the spacing of the cysteine residues (Cx3Cx2C vs. Cx2Cx2C), the nature of intervening amino acids, or the length of the cluster binding motif. In the absence of the stabilizing protein environment, the reduction process is proposed to proceed via [4Fe–4S]2+ cluster disassembly and reassembly in a more reduced state. UV–Vis and EPR spectroscopic techniques are employed as analytical tools to quantitate the as-reconstituted (or oxidized) and one-electron reduced states of the [4Fe–4S] clusters, respectively. We demonstrate that short Fd and radical SAM derived 7- to 9-mer peptides containing appropriate cysteine motifs function equally well in coordinating redox active [4Fe–4S] clusters.

Graphic abstract

Keywords

Iron sulfur clusters [4Fe–4S]-maquettes Ferredoxin Radical S-adenosylmethionine UV–Vis spectroscopy Electron paramagnetic resonance spectroscopy Protoenzymes Cysteine motifs 

Notes

Acknowledgements

The authors acknowledge the financial support from NSF Chemistry of Life Processes program Grant #1609557. The work on PFL-AE was supported by the National Institutes of Health GM 54608 (to J.B.B.).

Supplementary material

775_2019_1708_MOESM1_ESM.pdf (1.9 mb)
Details of UV–Vis spectral simulations, UV–Vis spectra of reconstitution experiments in the absence of peptide, EPR properties of [4Fe–4S]+-maquettes, reducing agent dependent EPR spectra, spectroscopic characterization of FdM control maquettes, time-elapsed UV–Vis spectra of as-reconstituted ferredoxin maquettes, redox cycling of radical SAM maquettes, wide-field EPR spectra, and EPR spectral simulations are provided as ESM

References

  1. 1.
    Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE (2001) Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29(5):1097–1106CrossRefGoogle Scholar
  2. 2.
    Cheek J, Broderick JB (2001) Adenosylmethionine-dependent iron-sulfur enzymes: Versatile clusters in a radical new role. J Biol Inorg Chem 6(3):209–226CrossRefGoogle Scholar
  3. 3.
    Broderick JB, Duffus BR, Duschene KS, Shepard EM (2014) Radical S-adenosylmethionine enzymes. Chem Rev 114(8):4229–4317CrossRefGoogle Scholar
  4. 4.
    Holliday GL, Akiva E, Meng EC, Brown SD, Calhoun S, Pieper U, Sali A, Booker SJ, Babbitt PC (2018) Atlas of the radical SAM superfamily: Divergent evolution of function using a “Plug and Play” domain. Methods Enzymol 606:1–71CrossRefGoogle Scholar
  5. 5.
    Nicolet Y, Drennan CL (2004) AdoMet radical proteins - from structure to evolution - alignment of divergent protein sequences reveals strong secondary structure element conservation. Nucleic Acids Res 32(13):4015–4025CrossRefGoogle Scholar
  6. 6.
    Vey JL, Drennan CL (2011) Structural insights into radical generation by the radical SAM superfamily. Chem Rev 111(4):2487–2506CrossRefGoogle Scholar
  7. 7.
    Broderick WE, Hoffman BM, Broderick JB (2018) Mechanism of radical initiation in the radical S-Adenosyl-l-methionine superfamily. Acc Chem Res 51(11):2611–2619CrossRefGoogle Scholar
  8. 8.
    Berkovitch F, Nicolet Y, Wan JT, Jarrett JT, Drennan CL (2004) Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science 303(5654):76–79CrossRefGoogle Scholar
  9. 9.
    Broderick JB, Duderstadt RE, Fernandez DC, Wojtuszewski K, Henshaw TF, Johnson MK (1997) Pyruvate formate-lyase activating enzyme is an iron-sulfur protein. J Am Chem Soc 119(31):7396–7397CrossRefGoogle Scholar
  10. 10.
    Duin EC, Lafferty ME, Crouse BR, Allen RM, Sanyal I, Flint DH, Johnson MK (1997) [2Fe–2S] to [4Fe–4S] cluster conversion in Escherichia coli biotin synthase. Biochemistry 36(39):11811–11820CrossRefGoogle Scholar
  11. 11.
    Ugulava NB, Gibney BR, Jarrett JT (2001) Biotin synthase contains two distinct iron-sulfur cluster binding sites: chemical and spectroelectrochemical analysis of iron-sulfur cluster interconversions. Biochemistry 40(28):8343–8351CrossRefGoogle Scholar
  12. 12.
    Hinckley GT, Frey PA (2006) Cofactor dependence of reduction potentials for [4Fe–4S]2+/+ in lysine 2,3-aminomutase. Biochemistry 45(10):3219–3225CrossRefGoogle Scholar
  13. 13.
    Henshaw TF, Cheek J, Broderick JB (2000) The [4Fe–4S]+ cluster of pyruvate formate-lyase activating enzyme generates the glycyl radical on pyruvate formate-lyase: EPR-detected single turnover. J Am Chem Soc 122:8331–8332CrossRefGoogle Scholar
  14. 14.
    Walsby CJ, Hong W, Broderick WE, Cheek J, Ortillo D, Broderick JB, Hoffman BM (2002) Electron-nuclear double resonance spectroscopic evidence that S-adenosylmethionine binds in contact with the catalytically active [4Fe–4S]+ cluster of pyruvate formate-lyase activating enzyme. J Am Chem Soc 124(12):3143–3151CrossRefGoogle Scholar
  15. 15.
    Krebs C, Broderick WE, Henshaw TF, Broderick JB, Huynh BH (2002) Coordination of adenosylmethionine to a unique iron site of the [4Fe–4S] of pyruvate formate-lyase activating enzyme: a Mössbauer spectroscopic study. J Am Chem Soc 124(6):912–913CrossRefGoogle Scholar
  16. 16.
    Walsby CJ, Ortillo D, Broderick WE, Broderick JB, Hoffman BM (2002) An anchoring role for FeS clusters: chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe–4S] cluster of pyruvate formate-lyase activating enzyme. J Am Chem Soc 124(38):11270–11271CrossRefGoogle Scholar
  17. 17.
    Walsby CJ, Ortillo D, Yang J, Nnyepi MR, Broderick WE, Hoffman BM, Broderick JB (2005) Spectroscopic approaches to elucidating novel iron-sulfur chemistry in the “Radical-SAM” protein superfamily. Inorg Chem 44(4):727–741CrossRefGoogle Scholar
  18. 18.
    Nicolet Y, Amara P, Mouesca JM, Fontecilla-Camps JC (2009) Unexpected electron transfer mechanism upon AdoMet cleavage in radical SAM proteins. Proc Natl Acad Sci USA 106(35):14867–14871CrossRefGoogle Scholar
  19. 19.
    Dey A, Peng Y, Broderick WE, Hedman B, Hodgson KO, Broderick JB, Solomon EI (2011) S K-edge XAS and DFT calculations on SAM dependent pyruvate formate-lyase activating enzyme: nature of interaction between Fe4S4 cluster and SAM and its role in reactivity. J Am Chem Soc 133(46):18656–18662CrossRefGoogle Scholar
  20. 20.
    Wang SC, Frey PA (2007) Binding energy in the one-electron reductive cleavage of S-adenosylmethionine in lysine 2,3-aminomutase, a radical SAM enzyme. Biochemistry 46(45):12889–12895CrossRefGoogle Scholar
  21. 21.
    Horitani M, Shisler K, Broderick WE, Hutcheson RU, Duschene KS, Marts AR, Hoffman BM, Broderick JB (2016) Radical SAM catalysis via an organometallic intermediate with an Fe–[5 ‘-C]-deoxyadenosyl bond. Science 352(6287):822–825CrossRefGoogle Scholar
  22. 22.
    Byer AS, Yang H, McDaniel EC, Kathiresan V, Impano S, Pagnier A, Watts H, Denler C, Vagstad AL, Piel J, Duschene KS, Shepard EM, Shields TP, Scott LG, Lilla EA, Yokoyama K, Broderick WE, Hoffman BM, Broderick JB (2018) Paradigm shift for radical S-adenosyl-l-methionine reactions: the organometallic intermediate Ω is central to catalysis. J Am Chem Soc 140(28):8634–8638CrossRefGoogle Scholar
  23. 23.
    Yang H, McDaniel EC, Impano S, Byer AS, Jodts RJ, Yokoyama K, Broderick WE, Broderick JB (2019) Hoffman BM (2019) The elusive 5′-deoxyadenosyl radical: captured and characterized by EPR and ENDOR spectroscopies. J Am Chem Soc 141:12139–12146CrossRefGoogle Scholar
  24. 24.
    Horitani M, Byer AS, Shisler KA, Chandra T, Broderick JB, Hoffman BM (2015) Why nature uses radical SAM enzymes so widely: electron nuclear double resonance studies of lysine 2,3-aminomutase show the 5′-dAdo* “free radical” is never free. J Am Chem Soc 137(22):7111–7121CrossRefGoogle Scholar
  25. 25.
    Que L, Anglin JR, Bobrik MA, Davison A, Holm RH (1974) Synthetic analogs of active-sites of iron-sulfur proteins 9. Formation and some electronic and reactivity properties of Fe4S4 glycyl-L-cysteinylglycyl oligopeptide complexes obtained by ligand substitution-reactions. J Am Chem Soc 96(19):6042–6048CrossRefGoogle Scholar
  26. 26.
    Gibney BR, Mulholland SE, Rabanal F, Dutton PL (1996) Ferredoxin and ferredoxin-heme maquettes. Proc Natl Acad Sci USA 93:15041–15046CrossRefGoogle Scholar
  27. 27.
    Mulholland SE, Gibney BR, Rabanal F, Dutton PL (1998) Characterization of the fundamental protein ligand requirements of [4Fe–4S]2+/+ clusters with sixteen amino acid maquettes. J Am Chem Soc 120(40):10296–10302CrossRefGoogle Scholar
  28. 28.
    Mulholland SE, Gibney BR, Rabanal F, Dutton PL (1999) Determination of nonligand amino acids critical to [4Fe–4S]2+/+ assembly in ferredoxin maquettes. Biochemistry 38:10442–10448CrossRefGoogle Scholar
  29. 29.
    Hoppe A, Pandelia ME, Gartner W, Lubitz W (2011) Lubitz W (2011) [Fe4S4]- and [Fe3S4]-cluster formation in synthetic peptides. Biochim Biophys Acta 1807(11):1414–1422CrossRefGoogle Scholar
  30. 30.
    Grzyb J, Xu F, Weiner L, Reijerse EJ, Lubitz W, Nanda V, Noy D (2010) De novo design of a non-natural fold for an iron-sulfur protein: α-helical coiled-coil with a four-iron four-sulfur cluster binding site in its central core. Biochim Biophys Acta 1797(3):406–413CrossRefGoogle Scholar
  31. 31.
    Grzyb J, Xu F, Nanda V, Luczkowska R, Reijerse E, Lubitz W, Noy D (2012) Empirical and computational design of iron-sulfur cluster proteins. Biochim Biophys Acta 1817 8:1256–1262Google Scholar
  32. 32.
    Kim JD, Rodriguez-Granillo A, Case DA, Nanda V, Falkowski PG (2012) Energetic selection of topology in ferredoxins. PLoS Comput Biol 8(4):e1002463CrossRefGoogle Scholar
  33. 33.
    Nanda V, Senn S, Pike DH, Rodriguez-Granillo A, Hansen WA, Khare SD, Noy D (2016) Structural principles for computational and de novo design of 4Fe–4S metalloproteins. Biochim Biophys Acta 1857(5):531–538CrossRefGoogle Scholar
  34. 34.
    Kim JD, Pike DH, Tyryshkin AM, Swapna GVT, Raanan H, Montelione GT, Nanda V, Falkowski PG (2018) Minimal heterochiral de novo designed 4Fe–4S binding peptide capable of robust electron transfer. J Am Chem Soc 140(36):11210–11213CrossRefGoogle Scholar
  35. 35.
    Scintilla S, Bonfio C, Belmonte L, Forlin M, Rossetto D, Li J, Cowan JA, Galliani A, Arnesano F, Assfalg M, Mansy SS (2016) Duplications of an iron-sulphur tripeptide leads to the formation of a protoferredoxin. Chem Commun (Camb) 52(92):13456–13459CrossRefGoogle Scholar
  36. 36.
    Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40(W1):W597–W603CrossRefGoogle Scholar
  37. 37.
    Goldfarb AR, Saidel LJ, Mosovich E (1951) The ultraviolet absorption spectra of proteins. J Biol Chem 193(1):397–404Google Scholar
  38. 38.
    Anthis NJ, Clore GM (2013) Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci 22(6):851–858CrossRefGoogle Scholar
  39. 39.
    Hagen KS, Watson AD, Holm RH (1983) Synthetic routes to Fe2S2, Fe3S4, Fe4S4, and Fe6S9 clusters from the common precursor [Fe(SC2H5)4]2−: Structures and properties of [Fe3S4(SR)4]3− and [Fe6S9(SC2H5)2]4−, examples of the newest types of Fe–S-SR clusters. J Am Chem Soc 105:3905–3913CrossRefGoogle Scholar
  40. 40.
    Coldren CD, Hellinga HW, Caradonna JP (1997) The rational design and construction of a cuboidal iron-sulfur protein. Proc Natl Acad Sci USA 94(13):6635–6640CrossRefGoogle Scholar
  41. 41.
    Vey JL, Yang J, Li M, Broderick WE, Broderick JB, Drennan CL (2008) Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme. Proc Natl Acad Sci USA 105(42):16137–16141CrossRefGoogle Scholar
  42. 42.
    Krebs C, Henshaw TF, Cheek J, Huynh BH, Broderick JB (2000) Conversion of 3Fe–4S to 4Fe–4S clusters in native pyruvate formate-lyase activating enzyme: Mössbauer characterization and implications for mechanism. J Am Chem Soc 122(50):12497–12506CrossRefGoogle Scholar
  43. 43.
    Johnson MK, Robinson AE, Thomson AJ (1982) Low-temperature magnetic circular dichroism studies of iron–sulfur proteins. Iron–sulfur proteins. Wiley, New York, pp 367–406Google Scholar
  44. 44.
    Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178(1):42–55CrossRefGoogle Scholar
  45. 45.
    Aasa R, Vanngard T (1975) EPR signal intensity and powder shapes—Re-examination. J Magn Reson 19(3):308–315Google Scholar
  46. 46.
    Luther GW, Rickard DT (2005) Metal sulfide cluster complexes and their biogeochemical importance in the environment. J Nanopart Res 7(4–5):389–407CrossRefGoogle Scholar
  47. 47.
    Rickard D, Luther GW (2007) Chemistry of iron sulfides. Chem Rev 107(2):514–562CrossRefGoogle Scholar
  48. 48.
    Hill CL, Renaud J, Holm RH, Mortenson LE (1977) Synthetic analogs of active-sites of iron-sulfur proteins 15. Comparative polarographic potentials of [Fe4S4(SR)4]2−/3− and Clostridium pasteurianum ferredoxin redox couples. J Am Chem Soc 99(8):2549–2557CrossRefGoogle Scholar
  49. 49.
    Christou G, Garner CD, Drew MGB, Cammack R (1981) Crystal structure and 13C nuclear magnetic-resonance spectrum of [NMe4]2[Fe4S4(SCH2CH2OH)4] and electron-spin resonance-spectrum of [Fe4S4(SCH2CH2OH)4]3− in aqueous-solution. J Chem Soc Dalton Trans 7:1550–1555CrossRefGoogle Scholar
  50. 50.
    Depamphilis BV, Averill BA, Herskovitz T, Que L, Holm RH (1974) Synthetic analogs of active-sites of iron-sulfur proteins 6. Spectral and redox characteristics of tetranuclear clusters [Fe4S4(SR)4]2−. J Am Chem Soc 96(13):4159–4167CrossRefGoogle Scholar
  51. 51.
    Bonfio C, Valer L, Scintilla S, Shah S, Evans DJ, Jin L, Szostak JW, Sasselov DD, Sutherland JD, Mansy SS (2017) UV-light-driven prebiotic synthesis of iron-sulfur clusters. Nat Chem 9(12):1229–1234CrossRefGoogle Scholar
  52. 52.
    Bonomi F, Werth MT, Kurtz DM (1985) Assembly of [Fe2S2(SR)4]2−, [Fe4S4(SR)4]2− in aqueous media from iron salts, thiols, and sulfur, sulfide, or thiosulfate plus rhodanese. Inorg Chem 24(25):4331–4335CrossRefGoogle Scholar
  53. 53.
    Cammack R, Balk J (2014) Chapter 12, Iron-sulfur clusters, Vol 2. In: Binding, transport and storage of metal ions in biological cells, Royal Society of Chemistry, London, pp 273–290. https://pubs.rsc.org/en/content/chapter/bk9781849735995-00333/978-1-84973-599-5
  54. 54.
    Kurtz DM, Stevens WC (1984) Assembly of [Fe2S2(SR)4]2−, [Fe4S4(SR)4]2− in aqueous-based media. J Am Chem Soc 106(5):1523–1524CrossRefGoogle Scholar
  55. 55.
    Qi WB, Li JW, Chain CY, Pasquevich GA, Pasquevich AF, Cowan JA (2012) Glutathione complexed Fe–S centers. J Am Chem Soc 134(26):10745–10748CrossRefGoogle Scholar
  56. 56.
    Gibney BR, Mulholland SE, Rabanal F, Dutton PL (1996) Ferredoxin and ferredoxin-heme maquettes. Proc Natl Acad Sci USA 93(26):15041–15046CrossRefGoogle Scholar
  57. 57.
    Kennedy ML, Gibney BR (2002) Proton coupling to [4Fe–4S]2+/+ and [4Fe–4Se]2+/+ oxidation and reduction in a designed protein. J Am Chem Soc 124(24):6826–6827CrossRefGoogle Scholar
  58. 58.
    Rupp H, Rao KK, Hall DO, Cammack R (1978) Electron spin relaxation of iron-sulphur proteins studied by microwave power saturation. Biochim Biophys Acta 537:255–269CrossRefGoogle Scholar
  59. 59.
    Shepard EM, Byer AS, Betz JN, Peters JW, Broderick JB (2016) A redox active [2Fe–2S] cluster on the hydrogenase maturase HydF. Biochemistry 55(25):3514–3527CrossRefGoogle Scholar
  60. 60.
    Shepard EM, Byer AS, Aggarwal P, Betz JN, Scott AG, Shisler KA, Usselman RJ, Eaton GR, Eaton SS, Broderick JB (2017) Electron spin relaxation and biochemical characterization of the hydrogenase maturase HydF: Insights into [2Fe–2S] and [4Fe–4S] cluster communication and hydrogenase activation. Biochemistry 56(25):3234–3247CrossRefGoogle Scholar
  61. 61.
    Werth MT, Kurtz DM, Howes BD, Huynh BH (1989) Observation of S = 2 EPR signals from ferrous iron thiolate complexes—relevance to rubredoxin-type sites in proteins. Inorg Chem 28(7):1357–1361CrossRefGoogle Scholar
  62. 62.
    Conover RC, Kowal AT, Fu WG, Park JB, Aono S, Adams MW, Johnson MK (1990) Spectroscopic characterization of the novel iron-sulfur cluster in Pyrococcus furiosus ferredoxin. J Biol Chem 265(15):8533–8541Google Scholar
  63. 63.
    Zambrano IC, Kowal AT, Mortenson LE, Adams MW, Johnson MK (1989) Magnetic circular dichroism and electron paramagnetic resonance studies of hydrogenases I and II from Clostridium pasteurianum. J Biol Chem 264(35):20974–20983Google Scholar
  64. 64.
    Lindahl PA, Day EP, Kent TA, Orme-Johnson WH, Munck E (1985) Mössbauer, EPR, and magnetization studies of the Azotobacter vinelandii Fe protein. Evidence for a [4Fe–4S]+ cluster with spin S = 3/2. J Biol Chem 260(20):11160–11173Google Scholar
  65. 65.
    Akiva E, Brown S, Almonacid DE, Barber AE II, Custer AF, Hicks MA, Huang CC, Lauck F, Mashiyama ST, Meng EC, Mischel D, Morris JH, Ojha S, Schnoes AM, Stryke D, Yunes JM, Ferrin TE, Holliday GL, Babbitt PC (2014) The structure-function linkage database. Nucleic Acids Res 42(Database issue):D521–530CrossRefGoogle Scholar
  66. 66.
    Mulholland SE, Gibney BR, Rabanal F, Dutton PL (1999) Determination of nonligand amino acids critical to [4Fe–4S]2+/+ assembly in ferredoxin maquettes. Biochemistry 38(32):10442–10448CrossRefGoogle Scholar
  67. 67.
    Hanscam R, Shepard EM, Broderick JB, Copie V, Szilagyi RK (2019) Secondary structure analysis of peptides with relevance to iron-sulfur cluster nesting. J Comput Chem 40(2):515–526CrossRefGoogle Scholar
  68. 68.
    Broderick JB, Henshaw TF, Cheek J, Wojtuszewski K, Smith SR, Trojan MR, McGhan RM, Kopf A, Kibbey M, Broderick WE (2000) Pyruvate formate-lyase-activating enzyme: strictly anaerobic isolation yields active enzyme containing a [3Fe–4S]+ cluster. Biochem Biophys Res Comum 269(2):451–456CrossRefGoogle Scholar
  69. 69.
    Shisler KA, Hutcheson RU, Horitani M, Duschene KS, Crain AV, Byer AS, Shepard EM, Rasmussen A, Yang J, Broderick WE, Vey JL, Drennan CL, Hoffman BM, Broderick JB (2017) Monovalent cation activation of the radical SAM enzyme pyruvate formate-lyase activating enzyme. J Am Chem Soc 139(34):11803–11813CrossRefGoogle Scholar
  70. 70.
    Kennedy MC, Kent TA, Emptage M, Merkle H, Beinert H, Munck E (1984) Evidence for the formation of a linear [3Fe–4S] cluster in partially unfolded aconitase. J Biol Chem 259(23):14463–14471Google Scholar
  71. 71.
    Kent TA, Emptage MH, Merkle H, Kennedy MC, Beinert H, Munck E (1985) Mössbauer studies of aconitase. Substrate and inhibitor binding, reaction intermediates, and hyperfine interactions of reduced 3Fe and 4Fe clusters. J Biol Chem 260(11):6871–6881Google Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryMontana State UniversityBozemanUSA

Personalised recommendations