Advertisement

Radical SAM enzymes: surprises along the path to understanding mechanism

  • William E. Broderick
  • Joan B. BroderickEmail author
Mini Review
Part of the following topical collections:
  1. Joan Broderick: Papers in Celebration of Her 2019 ACS Alfred Bader Award in Bioinorganic or Bioorganic Chemistry

Abstract

As the field of radical SAM enzymology has grown from a few examples in the 1990s to hundreds of thousands today, a fundamental question has remained: how does Nature use S-adenosyl-l-methionine to initiate radical reactions? This was a driving question when we first began studying pyruvate formate-lyase activating enzyme in 1993, and our journey for answers has brought us to many surprising discoveries, from the direct coordination of SAM to a unique iron in a [4Fe-4S] cluster, to our recent discovery of an organometallic intermediate and our ability to quantitatively produce and characterize the long-sought 5′-deoxyadenosyl radical intermediate. These adventures and what we have learned along the way about this fundamentally novel chemistry is described in this review.

Graphic abstract

Keywords

S-adenosylmethionine Radical SAM Organometallic Deoxyadenosyl radical 

Notes

References

  1. 1.
    Broderick JB, Duffus BR, Duschene KS, Shepard EM (2014) Radical S-Adenosylmethionine enzymes. Chem Rev 114:4229–4317CrossRefGoogle Scholar
  2. 2.
    Frey PA, Hegeman AD, Ruzicka FJ (2008) The radical SAM superfamily. Crit Rev Biochem Mol Biol 43:63–88CrossRefGoogle Scholar
  3. 3.
    Cheek J, Broderick JB (2001) Adenosylmethionine-dependent iron-sulfur enzymes: versatile clusters in a radical new role. J Biol Inorg Chem 6:209–226CrossRefGoogle Scholar
  4. 4.
    Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE (2001) Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29:1097–1106CrossRefGoogle Scholar
  5. 5.
    Akiva E, Brown S, Almonacid DE, Barber AE, Custer AF, Hicks MA, Huang CC, Lauck F, Mashiyama ST, Meng EC, Mischel D, Morris JH, Ojha S, Schnoes AM, Stryke D, Yunes JM, Ferrin TE, Holliday GL, Babbitt PC (2014) The structure-function linkage database. Nucl Acids Res 42:D521–D530CrossRefGoogle Scholar
  6. 6.
    Holliday GL, Akiva E, Meng EC, Brown SD, Calhoun S, Pieper U, Sali A, Booker SJ, Babbitt PC (2018) Atlas of the radical SAM superfamily: divergent evolution of function using a “Plug and Play” domain. Methods Enzymol 606:1–71CrossRefGoogle Scholar
  7. 7.
    Moss M, Frey PA (1987) The role of S-adenosylmethionine in the lysine 2,3-aminomutase reaction. J Biol Chem 262:14859–14862Google Scholar
  8. 8.
    Frey PA (1993) Lysine 2,3-aminomutase: is adenosylmethionine a poor man’s adenosylcobalamin? FASEB J 7:662–670CrossRefGoogle Scholar
  9. 9.
    Frey PA, Magnusson OT (2003) S-Adenosylmethionine: a wolf in sheep’s clothing, or a rich man’s adenosylcobalamin? Chem Rev 103:2129–2148CrossRefGoogle Scholar
  10. 10.
    Knappe J, Neugebauer FA, Blaschkowski HP, Gänzler M (1984) Post-translational activation introduces a free radical into pyruvate formate-lyase. Proc Natl Acad Sci USA 81:1332–1335CrossRefGoogle Scholar
  11. 11.
    Petrovich RM, Ruzicka FJ, Reed GH, Frey PA (1991) Metal cofactors of lysine-2,3-aminomutase. J Biol Chem 266:7656–7660Google Scholar
  12. 12.
    Mulliez E, Fontecave M, Gaillard J, Reichard P (1993) An iron-sulfur cluster and a free radical in the active anaerobic ribonucleotide reductase of Escherichia coli. J Biol Chem 268:2296–2299Google Scholar
  13. 13.
    Ollagnier S, Meier C, Mulliez E, Gaillard J, Schuenemann V, Trautwein A, Mattioli T, Lutz M, Fontecave M (1999) Assembly of 2Fe-2S and 4Fe-4S clusters in the anaerobic ribonucleotide reductase from Escherichia coli. J Am Chem Soc 121:6344–6350CrossRefGoogle Scholar
  14. 14.
    Broderick JB, Duderstadt RE, Fernandez DC, Wojtuszewski K, Henshaw TF, Johnson MK (1997) Pyruvate formate-lyase activating enzyme is an iron-sulfur protein. J Am Chem Soc 119:7396–7397CrossRefGoogle Scholar
  15. 15.
    Krebs C, Henshaw TF, Cheek J, Huynh B-H, Broderick JB (2000) Conversion of 3Fe-4S to 4Fe-4S clusters in native pyruvate formate lyase activating enzyme: Mössbauer characterization and implications for mechanism. J Am Chem Soc 122:12497–12506CrossRefGoogle Scholar
  16. 16.
    Rebeil R, Sun Y, Chooback L, Pedraza-Reyes M, Kinsland C, Begley TP, Nicholson WL (1998) Spore photoproduct lyase from Bacillus subtilis spores is a novel iron-sulfur DNA repair enzyme which shares features with proteins such as class III anaerobic ribonucleotide reductases and pyruvate formate-lyases. J Bacteriol 180:4879–4885Google Scholar
  17. 17.
    Krebs C, Broderick WE, Henshaw TF, Broderick JB, Huynh BH (2002) Coordination of adenosylmethionine to a unique iron site of the [4Fe-4S] of pyruvate formate-lyase activating enzyme: a Mössbauer spectroscopic study. J Am Chem Soc 124:912–913CrossRefGoogle Scholar
  18. 18.
    Walsby CJ, Ortillo D, Broderick WE, Broderick JB, Hoffman BM (2002) An anchoring role for FeS clusters: chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe-4S] cluster of pyruvate formate-lyase activating enzyme. J Am Chem Soc 124:11270–11271CrossRefGoogle Scholar
  19. 19.
    Walsby CJ, Ortillo D, Yang J, Nnyepi M, Broderick WE, Hoffman BM, Broderick JB (2005) Spectroscopic approaches to elucidating novel iron-sulfur chemistry in the “Radical SAM” protein superfamily. Inorg Chem 44:727–741CrossRefGoogle Scholar
  20. 20.
    Chen D, Walsby C, Hoffman BM, Frey PA (2003) Coordination and mechanism of reversible cleavage of S-adenosylmethionine by the [4Fe-4S] center in lysine 2,3-aminomutase. J Am Chem Soc 125:11788–11789CrossRefGoogle Scholar
  21. 21.
    Layer G, Moser J, Heinz DW, Jahn D, Schubert W-D (2003) Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes. EMBO J 22:6214–6224CrossRefGoogle Scholar
  22. 22.
    Berkovitch F, Nicolet Y, Wan JT, Jarrett JT, Drennan CL (2004) Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science 303:76–79CrossRefGoogle Scholar
  23. 23.
    Lepore BW, Ruzicka FJ, Frey PA, Ringe D (2005) The x-ray crystal structure of lysine-2,3-aminomutase from Clostridium subterminale. Proc Natl Acad Sci USA 102:13819–13824CrossRefGoogle Scholar
  24. 24.
    Nicolet Y, Rubach JK, Posewitz MC, Amara P, Mathevon C, Atta M, Fontecave M, Fontecilla-Camps JC (2008) X-Ray structure of the [FeFe]-hydrogenase maturase HydE from Thermotoga maritima. J Biol Chem 283:18861–18872CrossRefGoogle Scholar
  25. 25.
    Vey JL, Yang J, Li M, Broderick WE, Broderick JB, Drennan CL (2008) Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme. Proc Natl Acad Sci USA 105:16137–16141CrossRefGoogle Scholar
  26. 26.
    Vey JL, Drennan CL (2011) Structural insights into radical generation by the radical SAM superfamily. Chem Rev 111:2487–2506CrossRefGoogle Scholar
  27. 27.
    Walsby CJ, Hong W, Broderick WE, Cheek J, Ortillo D, Broderick JB, Hoffman BM (2002) Electron-nuclear double resonance spectroscopic evidence that S-adenosylmethionine binds in contact with the catalytically active [4Fe-4S]+ cluster of pyruvate formate-lyase activating enzyme. J Am Chem Soc 124:3143–3151CrossRefGoogle Scholar
  28. 28.
    Shisler KA, Hutcheson RU, Horitani M, Duschene KS, Crain AV, Byer AS, Shepard EM, Rasmussen A, Yang J, Broderick WE, Vey JL, Drennan CL, Hoffman BM, Broderick JB (2017) Monovalent cation activation of the radical SAM enzyme pyruvate formate-lyase activating enzyme. J Am Chem Soc 139:11803–11813CrossRefGoogle Scholar
  29. 29.
    Knappe J, Schacht J, Mockel W, Hopner T, Vetter HJ, Edenharder R (1969) Pyruvate formate-lyase reaction in Escherichia coli. The enzymatic system converting an inactive form of the lyase into the catalytically active enzyme. Eur J Biochem 11:316–327CrossRefGoogle Scholar
  30. 30.
    Blaschkowski HP, Neuer G, Ludwig-Festl M, Knappe J (1982) Routes of flavodoxin and ferredoxin reduction in Escherichia coli. CoA-acylating pyruvate: flavodoxin and NADPH: flavodoxin oxidoreductases participating in the activation of pyruvate formate-lyase. Eur J Biochem 123:563–569CrossRefGoogle Scholar
  31. 31.
    Bianchi V, Eliasson R, Fontecave M, Mulliez E, Hoover DM, Matthews RG, Reichard PG (1993) Flavodoxin is required for the activation of the anaerobic ribonucleotide reductase. Biochem Biophys Res Commun 197:792–797CrossRefGoogle Scholar
  32. 32.
    Ifuku O, Koga N, Haze S-I, Kishimoto J, Wachi Y (1994) Flavodoxin is required for conversion of dethiobiotin to biotin in Escherichia coli. Eur J Biochem 224:173–178CrossRefGoogle Scholar
  33. 33.
    Crain AV, Broderick JB (2013) Flavodoxin cofactor binding induces structural changes that are required for protein-protein interactions with NADP+ oxidoreductase and pyruvate formate-lyase activating enzyme. Biochim Biophys Acta 1834:2512–2519CrossRefGoogle Scholar
  34. 34.
    Lieder KW, Booker S, Ruzicka FJ, Beinert H, Reed GH, Frey PA (1998) S-Adenosylmethionine-dependent reduction of lysine 2,3-aminomutase and observation of the catalytically functional iron-sulfur centers by electron paramagnetic resonance. Biochemistry 37:2578–2585CrossRefGoogle Scholar
  35. 35.
    Henshaw TF, Cheek J, Broderick JB (2000) The [4Fe-4S]+ cluster of pyruvate formate-lyase activating enzyme generates the glycyl radical on pyruvate formate-lyase: EPR-detected single turnover. J Am Chem Soc 122:8331–8332CrossRefGoogle Scholar
  36. 36.
    Dey A, Peng Y, Broderick WE, Hedman B, Hodgson KO, Broderick JB, Solomon EI (2011) S K-edge XAS and DFT calculations on SAM dependent pyruvate formate-lyase activating enzyme: nature of interaction between the Fe4S4 cluster and SAM and its role in reactivity. J Am Chem Soc 133:18656–18662CrossRefGoogle Scholar
  37. 37.
    Magnusson OT, Reed GH, Frey PA (1999) Spectroscopic evidence for the participation of an allylic analogue of the 5′-deoxyadenosyl radical in the reaction of lysine 2,3-aminomutase. J Am Chem Soc 121:9764–9765CrossRefGoogle Scholar
  38. 38.
    Magnusson OT, Reed GH, Frey PA (2001) Characterization of an allylic analogue of the 5′-deoxyadenosyl radical: an intermediate in the reaction of lysine 2,3-aminomutase. Biochemistry 40:7773–7782CrossRefGoogle Scholar
  39. 39.
    Horitani M, Byer AS, Shisler KA, Chandra T, Broderick JB, Hoffman BM (2015) Why nature uses radical SAM enzymes so widely: electron nuclear double resonance studies of lysine 2,3-aminomutase show the 5′-dAdo• “free radical” is never free. J Am Chem Soc 137:7111–7121CrossRefGoogle Scholar
  40. 40.
    Horitani M, Shisler KA, Broderick WE, Hutcheson RU, Duschene KS, Marts AR, Hoffman BM, Broderick JB (2016) Radical SAM catalysis via an organometallic intermediate with an Fe-[5′-C]-deoxyadenosyl bond. Science 352:822–825CrossRefGoogle Scholar
  41. 41.
    Broderick WE, Hoffman BM, Broderick JB (2018) Mechanism of radical initiation in the radical S-Adenosyl-l-methionine superfamily. Acc Chem Res 51:2611–2619CrossRefGoogle Scholar
  42. 42.
    Byer AS, Yang H, McDaniel EC, Kathiresan V, Impano S, Pagnier A, Watts H, Denler C, Vagstad AL, Piel J, Duschene KS, Shepard EM, Shields TP, Scott LG, Lilla EA, Yokoyama K, Broderick WE, Hoffman BM, Broderick JB (2018) Paradigm shift for radical S-adenosyl-l-methionine reactions: the organometallic intermediate Ω is central to catalysis. J Am Chem Soc 140:8634–8638CrossRefGoogle Scholar
  43. 43.
    Dong M, Kathiresan V, Fenwick MK, Torelli AT, Zhang Y, Caranto J, Dzikovski B, Sharma A, Lancaster KM, Freed JH, Ealick SE, Hoffman BM, Lin H (2018) Organometallic and radical intermediates reveal mechanism of diphthamide biosynthesis. Science 359:1247–1250CrossRefGoogle Scholar
  44. 44.
    Jones AR (2017) The photochemistry and photobiology of vitamin B12. Photochem Photobiol Sci 16:820–834CrossRefGoogle Scholar
  45. 45.
    Rury AS, Wiley TE, Sension R (2015) Energy cascades, escited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins. Acc Chem Res 48:860–867CrossRefGoogle Scholar
  46. 46.
    Ghanekar VD, Lin RJ, Coffman RE (1981) Detection by electron spin resonance of an exchange-coupled cob(II)alamin…free radical pair species generated by anaerobic photolysis of polycrystalline adenosylcobalamin. Biochem Bioph Res Commun 101:215–221CrossRefGoogle Scholar
  47. 47.
    Yang H, McDaniel EC, Impano S, Byer AS, Jodts RJ, Yokoyama K, Broderick WE, Broderick JB, Hoffman BM (2019) The elusive 5′-deoxyadenosyl radical: captured and characterized by electron paramagnetic resonance and electron nuclear double resonance spectroscopies. J Am Chem Soc 141:12139–12146CrossRefGoogle Scholar
  48. 48.
    Beinert H (2000) Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 5:2–15CrossRefGoogle Scholar
  49. 49.
    Duschene KS, Veneziano SE, Silver SC, Broderick JB (2009) Control of radical chemistry in the AdoMet radical enzymes. Curr Opin Chem Biol 13:74–83CrossRefGoogle Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryMontana State UniversityBozemanUSA

Personalised recommendations