Advertisement

JBIC Journal of Biological Inorganic Chemistry

, Volume 24, Issue 6, pp 809–815 | Cite as

The conserved CDC motif in the yeast iron regulator Aft2 mediates iron–sulfur cluster exchange and protein–protein interactions with Grx3 and Bol2

  • Haoran Li
  • Caryn E. OuttenEmail author
Original Paper
Part of the following topical collections:
  1. Joan Broderick: Papers in Celebration of Her 2019 ACS Alfred Bader Award in Bioinorganic or Bioorganic Chemistry

Abstract

The Saccharomyces cerevisiae transcriptional activator Aft1 and its paralog Aft2 respond to iron deficiency by upregulating expression of proteins required for iron uptake at the plasma membrane, vacuolar iron transport, and mitochondrial iron metabolism, with the net result of mobilizing iron from extracellular sources and intracellular stores. Conversely, when iron levels are sufficient, Aft1 and Aft2 interact with the cytosolic glutaredoxins Grx3 and Grx4 and the BolA protein Bol2, which promote Aft1/2 dissociation from DNA and subsequent export from the nucleus. Previous studies unveiled the molecular mechanism for iron-dependent inhibition of Aft1/2 activity, demonstrating that the [2Fe–2S]-bridged Grx3–Bol2 heterodimer transfers a cluster to Aft2, driving Aft2 dimerization and dissociation from DNA. Here, we provide further insight into the regulation mechanism by investigating the roles of conserved cysteines in Aft2 in iron–sulfur cluster binding and interaction with [2Fe–2S]–Grx3–Bol2. Using size exclusion chromatography and circular dichroism spectroscopy, these studies reveal that both cysteines in the conserved Aft2 Cys-Asp-Cys motif are essential for Aft2 dimerization via [2Fe–2S] cluster binding, while only one cysteine is required for interaction with the [2Fe–2S]–Grx3–Bol2 complex. Taken together, these results provide novel insight into the molecular details of iron–sulfur cluster transfer from Grx3–Bol2 to Aft2 which likely occurs through a ligand exchange mechanism. Loss of either cysteine in the Aft2 iron–sulfur binding site may disrupt this ligand-exchange process leading to the isolation of a trapped Aft2–Grx3–Bol2 intermediate, while the replacement of both cysteines abrogates both the iron–sulfur cluster exchange and the protein–protein interactions between Aft2 and Grx3–Bol2.

Keywords

Iron–sulfur cluster Iron regulation Glutaredoxin Circular dichroism Zinc-finger domain Glutathione Yeast 

Abbreviations

CD

Circular dichroism

CDC

Cys–Asp–Cys

Cys

Cysteine

Fe–S

Iron–sulfur

Grx

Glutaredoxin

GSH

Glutathione

IPTG

Isopropyl β-d-thiogalactoside

LB

Luria–Bertani medium

PMSF

Phenylmethanesulfonyl fluoride

SEC

Size exclusion chromatography

TCEP

Tris[2-carboxyethyl] phosphine

WT

Wild type

Notes

Acknowledgements

This work was supported by Grant R35 GM118164 to C.E.O. from the National Institute of General Medical Sciences.

Supplementary material

775_2019_1705_MOESM1_ESM.pdf (440 kb)
Supplementary material 1 (PDF 439 kb)

References

  1. 1.
    Blaiseau PL, Lesuisse E, Camadro JM (2001) J Biol Chem 276:34221–34226CrossRefGoogle Scholar
  2. 2.
    Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR (2001) Proc Natl Acad Sci U S A 98:14322–14327CrossRefGoogle Scholar
  3. 3.
    Yamaguchi-Iwai Y, Dancis A, Klausner RD (1995) EMBO J 14:1231–1239CrossRefGoogle Scholar
  4. 4.
    Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD (1996) EMBO J 15:3377–3384CrossRefGoogle Scholar
  5. 5.
    Courel M, Lallet S, Camadro JM, Blaiseau PL (2005) Mol Cell Biol 25:6760–6771CrossRefGoogle Scholar
  6. 6.
    Rutherford JC, Jaron S, Winge DR (2003) J Biol Chem 278:27636–27643CrossRefGoogle Scholar
  7. 7.
    Yamaguchi-Iwai Y, Ueta R, Fukunaka A, Sasaki R (2002) J Biol Chem 277:18914–18918CrossRefGoogle Scholar
  8. 8.
    Rutherford JC, Ojeda L, Balk J, Mühlenhoff U, Lill R, Winge DR (2005) J Biol Chem 280:10135–10140CrossRefGoogle Scholar
  9. 9.
    Kumanovics A, Chen OS, Li L, Bagley D, Adkins EM, Lin H, Dingra NN, Outten CE, Keller G, Winge D, Ward DM, Kaplan J (2008) J Biol Chem 283:10276–10286CrossRefGoogle Scholar
  10. 10.
    Lesuisse E, Knight SA, Courel M, Santos R, Camadro JM, Dancis A (2005) Genetics 169:107–122CrossRefGoogle Scholar
  11. 11.
    Pujol-Carrion N, Belli G, Herrero E, Nogues A, de la Torre-Ruiz MA (2006) J Cell Sci 119:4554–4564CrossRefGoogle Scholar
  12. 12.
    Mühlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N, Seubert A, Zhang Y, Stubbe J, Pierrel F, Herrero E, Lillig CH, Lill R (2010) Cell Metab 12:373–385CrossRefGoogle Scholar
  13. 13.
    Ueta R, Fujiwara N, Iwai K, Yamaguchi-Iwai Y (2012) Mol Cell Biol 32:4998–5008CrossRefGoogle Scholar
  14. 14.
    Poor CB, Wegner SV, Li H, Dlouhy AC, Schuermann JP, Sanishvili R, Hinshaw JR, Riggs-Gelasco PJ, Outten CE, He C (2014) Proc Natl Acad Sci USA 111:4043–4048CrossRefGoogle Scholar
  15. 15.
    Li H, Mapolelo DT, Dingra NN, Keller G, Riggs-Gelasco PJ, Winge DR, Johnson MK, Outten CE (2011) J Biol Chem 286:867–876CrossRefGoogle Scholar
  16. 16.
    Li H, Mapolelo DT, Dingra NN, Naik SG, Lees NS, Hoffman BM, Riggs-Gelasco PJ, Huynh BH, Johnson MK, Outten CE (2009) Biochemistry 48:9569–9581CrossRefGoogle Scholar
  17. 17.
    Li H, Outten CE (2012) Biochemistry 51:4377–4389CrossRefGoogle Scholar
  18. 18.
    Picciocchi A, Saguez C, Boussac A, Cassier-Chauvat C, Chauvat F (2007) Biochemistry 46:15018–15026CrossRefGoogle Scholar
  19. 19.
    Ojeda L, Keller G, Mühlenhoff U, Rutherford JC, Lill R, Winge DR (2006) J Biol Chem 281:17661–17669CrossRefGoogle Scholar
  20. 20.
    Ueta R, Fujiwara N, Iwai K, Yamaguchi-Iwai Y (2007) Mol Biol Cell 18:2980–2990CrossRefGoogle Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaUSA
  2. 2.Kymera TherapeuticsCambridgeUSA

Personalised recommendations