Structural implications of the paramagnetically shifted NMR signals from pyridine H atoms on synthetic nonheme FeIV=O complexes

  • Waqas Rasheed
  • Ruixi Fan
  • Chase S. Abelson
  • Paul O. Peterson
  • Wei-Min Ching
  • Yisong GuoEmail author
  • Lawrence QueJr.Email author


Oxoiron(IV) motifs are found in important intermediates in many enzymatic cycles that involve oxidations. Over half of the reported synthetic nonheme oxoiron(IV) analogs incorporate heterocyclic donors, with a majority of them comprising pyridines. Herein, we report 1H-NMR studies of oxoiron(IV) complexes containing pyridines that are arranged in different configurations relative to the Fe = O unit and give rise to paramagnetically shifted resonances that differ by as much as 50 ppm. The strong dependence of 1H-NMR shifts on the different configurations and orientation of pyridines relative to the oxoiron(IV) unit demonstrates how unpaired electronic spin density of the iron center affects the chemical shifts of these protons.


Nonheme iron Iron(IV)-oxo complexes NMR 



We gratefully acknowledge the support of the U.S. National Science Foundation (Grants CHE-1665391 to L.Q. and CHE-1654060 to Y.G.). The Bruker Avance III HD nanobay 400 MHz spectrometer used in this study was purchased from funds provided by the Office of the Vice President of Research, the College of Science and Engineering, and the Department of Chemistry at the University of Minnesota. The Bruker-AXS D8 Venture Diffractometer was purchased through a grant from NSF/MRI 1229400 and the University of Minnesota. We thank Dr. Letitia Yao for her help with NMR experiments and Dr Victor G. Young and Shuangning Xu for their valuable input on X-ray crystallography. We also thank the Pittsburgh Supercomputing Center for granting us computational resources (CHE180020P to R.F. and Y.G.).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

775_2019_1672_MOESM1_ESM.pdf (689 kb)
Supplementary material 1 (PDF 690 kb)
775_2019_1672_MOESM2_ESM.pdf (220 kb)
Supplementary material 2 (PDF 219 kb)
775_2019_1672_MOESM3_ESM.pdf (186 kb)
Supplementary material 3 (PDF 186 kb)


  1. 1.
    Kal S, Que L (2017) J Biol Inorg Chem 22(2):339–365CrossRefGoogle Scholar
  2. 2.
    Bollinger JM Jr., Chang W-C, Matthews ML, Martinie RJ, Boal AK, Krebs C (2015) In: Hausinger RP, Schofield CJ (eds) 2-Oxoglutarate-dependent oxygenases. Royal Society of Chemistry, Cambridge, pp 95–122CrossRefGoogle Scholar
  3. 3.
    Krebs C, Galonić Fujimori D, Walsh CT, Bollinger JM (2007) Acc Chem Res 40(7):484–492CrossRefGoogle Scholar
  4. 4.
    Sinnecker S, Svensen N, Barr EW, Ye S, Bollinger JM, Neese F, Krebs C (2007) J Am Chem Soc 129(19):6168–6179CrossRefGoogle Scholar
  5. 5.
    Tamanaha E, Zhang B, Guo Y, Chang W-C, Barr EW, Xing G, Clair J, Ye S, Neese F, Bollinger JM, Krebs C (2016) J Am Chem Soc 28:8862–8874CrossRefGoogle Scholar
  6. 6.
    Yu C-P, Tang Y, Cha L, Milikisiyants S, Smirnova TI, Smirnov AI, Guo Y, Chang W-C (2018) J Am Chem Soc 140(45):15190–15193CrossRefGoogle Scholar
  7. 7.
    McDonald AR, Que L Jr (2013) Coord Chem Rev 257(2):414–428CrossRefGoogle Scholar
  8. 8.
    Klein JEMN, Que L (2016) Biomimetic high-valent mononuclear nonheme iron-oxo chemistry. Encyclopedia of Inorganic and Bioinorganic Chemistry. Wiley, Hoboken. Google Scholar
  9. 9.
    Engelmann X, Monte-Pérez I, Ray K (2016) Angew Chem Int Ed 55(27):7632–7649CrossRefGoogle Scholar
  10. 10.
    Rohde J-U, In J-H, Lim MH, Brennessel WW, Bukowski MR, Stubna A, Münck E, Nam W, Que L (2003) Science 299(5609):1037CrossRefGoogle Scholar
  11. 11.
    Thibon A, England J, Martinho M, Young VG Jr, Frisch JR, Guillot R, Girerd J-J, Münck E, Que L Jr, Banse F (2008) Angew Chem Int Ed 47(37):7064–7067CrossRefGoogle Scholar
  12. 12.
    England J, Bigelow JO, Van Heuvelen KM, Farquhar ER, Martinho M, Meier KK, Frisch JR, Münck E, Que L (2014) Chem. Sci 5(3):1204–1215CrossRefGoogle Scholar
  13. 13.
    Prakash J, Rohde GT, Meier KK, Münck E, Que L (2015) Inorg Chem 54(23):11055–11057CrossRefGoogle Scholar
  14. 14.
    Schaub S, Miska A, Becker J, Zahn S, Mollenhauer D, Sakshath S, Schünemann V, Schindler S (2018) Angew Chem Int Ed 57(19):5355–5358CrossRefGoogle Scholar
  15. 15.
    Klinker EJ, Kaizer J, Brennessel WW, Woodrum NL, Cramer CJ, Que L Jr (2005) Angew Chem Int Ed 44(24):3690–3694CrossRefGoogle Scholar
  16. 16.
    Sahu S, Zhang B, Pollock CJ, Dürr M, Davies CG, Confer AM, Ivanović-Burmazović I, Siegler MA, Jameson GNL, Krebs C, Goldberg DP (2016) J Am Chem Soc 138(39):12791–12802CrossRefGoogle Scholar
  17. 17.
    Rasheed W, Draksharapu A, Banerjee S, Young VG, Fan R, Guo Y, Ozerov M, Nehrkorn J, Krzystek J, Telser J, Que L (2018) Angew Chem Int Ed 57(30):9387–9391CrossRefGoogle Scholar
  18. 18.
    Ming L-J (2000) Nuclear magnetic resonance of paramagnetic metal centers in proteins and synthetic complexes. In physical methods in bioinorganic chemistry. Spectroscopy and magnetism. University Science Books, Sausalito, pp 375–464Google Scholar
  19. 19.
    Bertini I, Luchinat C, Parigi G (2001) Solution NMR of paramagnetic molecules: applications to metallobiomolecules and models. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Nájera C, Gil-Moltó J, Karlström S (2004) Adv Synth Catal 346(13–15):1798–1811CrossRefGoogle Scholar
  21. 21.
    Nanthakumar A, Fox S, Murthy NN, Karlin KD (1997) J Am Chem Soc 119(17):3898–3906CrossRefGoogle Scholar
  22. 22.
    Klinker EJ (2007) University of Minnesota. Minneapolis, MNGoogle Scholar
  23. 23.
    Chantarojsiri T, Sun Y, Long JR, Chang CJ (2015) Inorg Chem 54(12):5879–5887CrossRefGoogle Scholar
  24. 24.
    Bechlars B, D’Alessandro DM, Jenkins DM, Iavarone AT, Glover SD, Kubiak CP, Long JR (2010) Nat Chem 2:362CrossRefGoogle Scholar
  25. 25.
    Lubben M, Meetsma A, Wilkinson EC, Feringa B, Que L Jr (1995) Angew Chem Int Ed 34(13–14):1512–1514CrossRefGoogle Scholar
  26. 26.
    Duelund L, Hazell R, McKenzie CJ, Preuss Nielsen L, Toftlund H (2001) J Chem Soc Dalton Trans 2:152–156CrossRefGoogle Scholar
  27. 27.
    Ching W-M, Zhou A, Klein JEMN, Fan R, Knizia G, Cramer CJ, Guo Y, Que L (2017) Inorg Chem 56(18):11129–11140CrossRefGoogle Scholar
  28. 28.
    Kaizer J, Klinker EJ, Oh NY, Rohde J-U, Song WJ, Stubna A, Kim J, Münck E, Nam W, Que L Jr (2004) J Am Chem Soc 126(2):472–473CrossRefGoogle Scholar
  29. 29.
    APEX3 (2016) Bruker Analytical X-ray Systems Madison WIGoogle Scholar
  30. 30.
    SADABS (2016) Bruker Analytical X-ray systems Madison WIGoogle Scholar
  31. 31.
    SAINT (2016) Bruker analytical X-ray systems Madison WIGoogle Scholar
  32. 32.
    Sheldrick GM SHELXTL 2008 Bruker Analytical X-Ray Systems Madison WI Acta Cryst A64:112-122CrossRefGoogle Scholar
  33. 33.
    Sheldrick GM (2015) Acta Cryst C71:3–8Google Scholar
  34. 34.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding FL, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao NR, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Jr. JAM Peralta JE, Ogliaro F, Bearpark MJ, Heyd J J, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2018) Gaussian Inc. Wallingford CT 2016Google Scholar
  35. 35.
    Borgogno A, Rastrelli F, Bagno A (2015) Chem Eur J 21(37):12960–12970CrossRefGoogle Scholar
  36. 36.
    Borgogno A, Rastrelli F, Bagno A (2014) Dalton Trans 43(25):9486–9496CrossRefGoogle Scholar
  37. 37.
    Rastrelli F, Bagno A (2010) Magn Reson Chem 48(S1):S132–S141CrossRefGoogle Scholar
  38. 38.
    Rastrelli F, Bagno A (2009) Chem Eur J 15(32):7990–8004Google Scholar
  39. 39.
    Reiher M (2002) Inorg Chem 41(25):6928–6935CrossRefGoogle Scholar
  40. 40.
    Bertini I, Luchinat C, Parigi G (2002) Prog Nucl Magn Reson Spectrosc 40(3):249–273CrossRefGoogle Scholar
  41. 41.
    Hrobárik P, Reviakine R, Arbuznikov AV, Malkina OL, Malkin VG, Köhler FH, Kaupp M (2007) J. Chem. Phys. 126(2):024107CrossRefGoogle Scholar
  42. 42.
    Banerjee S, Rasheed W, Fan R, Draksharapu A, Oloo WN, Guo Y, Que L Jr (2019) Chem Eur J. Google Scholar
  43. 43.
    Mukherjee G, Lee CWZ, Nag SS, Alili A, Cantú Reinhard FG, Kumar D, Sastri CV, de Visser SP (2018) Dalton Trans 47(42):14945–14957CrossRefGoogle Scholar
  44. 44.
    Draksharapu A, Angelone D, Quesne MG, Padamati SK, Gómez L, Hage R, Costas M, Browne WR, de Visser SP 2015 Angew Chem Int Ed 54(14):4357–4361CrossRefGoogle Scholar
  45. 45.
    Rana S, Dey A, Maiti D (2015) Chem Commun 51(77):14469–14472CrossRefGoogle Scholar
  46. 46.
    Mukherjee G, Alili A, Barman P, Kumar D, Sastri CV, Visser SP (2019) Chem Eur J 25(19):5086–5098CrossRefGoogle Scholar
  47. 47.
    Singh R, Ganguly G, Malinkin SO, Demeshko S, Meyer F, Nordlander E, Paine TK (2019) Inorg Chem 58(3):1862–1876CrossRefGoogle Scholar
  48. 48.
    Ortega-Villar N, Ugalde-Saldívar VM, Muñoz MC, Ortiz-Frade LA, Alvarado-Rodríguez JG, Real JA, Moreno-Esparza R (2007) Inorg Chem 46(18):7285–7293CrossRefGoogle Scholar
  49. 49.
    Company A, Sabenya G, González-Béjar M, Gómez L, Clémancey M, Blondin G, Jasniewski AJ, Puri M, Browne WR, Latour J-M, Que L, Costas M, Pérez-Prieto J, Lloret-Fillol J (2014) J Am Chem Soc 136(12):4624–4633CrossRefGoogle Scholar
  50. 50.
    Spek AL, Schoondergang MFJ, Feringa BL (2004) CSD Communication CCDC 232796Google Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Center of Metals in BiocatalysisUniversity of Minnesota—Twin CitiesMinneapolisUSA
  2. 2.Department of ChemistryCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations