Advertisement

Rapeseed flower pollen bio-green synthesized silver nanoparticles: a promising antioxidant, anticancer and antiangiogenic compound

  • Sahar Hajebi
  • Masoud Homayouni TabriziEmail author
  • Mahboobeh Nakhaei Moghaddam
  • Farzaneh Shahraki
  • Soheyla Yadamani
Original Paper
  • 44 Downloads

Abstract

Based on recent researches, bio synthesized silver nanoparticles (Ag-NPs) seem to have the potential in declining angiogenesis and oxidative stress. In the current study, rapeseed flower pollen (RFP) water extract was triggered to synthesize RFP–silver nanoparticles (RFP/Ag-NPs). Moreover, antioxidant, antiangiogenesis and cytotoxicity of the RFP/Ag-NPs against MDA-MB-231, MCF7 and carcinoma cell lines and normal human skin fibroblast HDF were compared. Results indicated that RFP/Ag-NPs have a peak at 430 nm, spherical shape and an average size of 24 nm. According to the results of FTIR, rapeseed pollen capped Ag-NPs. RFP/Ag-NPs have cytotoxicity on MDA-MB-231 and MCF7 cells and decrease cancerous cell viability (IC50 = 3 µg/ml and 2 µg/ml, respectively) in a dose- and time-dependent manner. The morphological data showed that the RFP/Ag-NPs increase the percentage of apoptotic cells compared to the control group and normal cells (human skin fibroblast cells). The apoptotic morphological change was also confirmed with a flow cytometric analysis. RFP/ Ag-NPs’ antioxidant activity was evaluated by measuring their ability to scavenge ABTS and DPPH free radicals. The IC50 values were determined at 800 and 830 μg/ml for ABTS and DPPH tests, respectively. According to the results, green-synthesized RFP/Ag-NPs as a safe efficient apoptosis inducer and strong antioxidant compound have the potential to suppress breast cancer carcinogenesis by VEGF down-regulatiion and thus sensitizing them against apoptosis. However, further researches are required to clarify RFP/Ag-NPs’ cell specificity and therapeutic doses in in vivo conditions.

Keywords

Rapeseed flower pollen Green synthesized silver nanoparticles Breast cancerous cell line (MDA-MB-231) VEGF down-regulating Apoptosis-inducer Antioxidant 

Notes

Acknowledgements

This work was supported by the Islamic Azad University, Mashhad, Iran, which is appreciated by the authors.

References

  1. 1.
    Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci 90(17):7915–7922CrossRefGoogle Scholar
  2. 2.
    Valko M et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40CrossRefGoogle Scholar
  3. 3.
    Sharma CK et al (2015) Green synthesis of different nanoparticles and their potential applications in different fields—a critical review. Int J Pharm Bio Sci 6(3):555–567Google Scholar
  4. 4.
    Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650CrossRefGoogle Scholar
  5. 5.
    Gejo G, Kuruvilla J, Boudenne A, Sabu T (2010) Recent advances in green composites. Key Eng Mater 425:107–166CrossRefGoogle Scholar
  6. 6.
    Zhang X-F et al (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534CrossRefGoogle Scholar
  7. 7.
    Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRefGoogle Scholar
  8. 8.
    Shah M et al (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8(11):7278–7308CrossRefGoogle Scholar
  9. 9.
    Mandal D et al (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69(5):485–492CrossRefGoogle Scholar
  10. 10.
    Hong P et al (2015) Green synthesis and stability evaluation of ag nanoparticles using bamboo hemicellulose. BioResources 11(1):385–399CrossRefGoogle Scholar
  11. 11.
    Marchiol L (2012) Synthesis of metal nanoparticles in living plants. Ital J Agron 7(3):37CrossRefGoogle Scholar
  12. 12.
    Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (aнглoязычнaя вepcия) 6(1):35–44Google Scholar
  13. 13.
    Kannan R, Stirk W, Van Staden J (2013) Synthesis of silver nanoparticles using the seaweed Codium capitatum PC Silva (Chlorophyceae). S Afr J Bot 86:1–4CrossRefGoogle Scholar
  14. 14.
    Fu D-H et al (2016) Research progress and strategies for multifunctional rapeseed: a case study of China. J Integr Agric 15(8):1673–1684CrossRefGoogle Scholar
  15. 15.
    Rajan R et al (2015) Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crops Prod 70:356–373CrossRefGoogle Scholar
  16. 16.
    Ovais M et al (2018) Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol 102(16):6799–6814CrossRefGoogle Scholar
  17. 17.
    Gasser CA et al (2014) Advanced enzymatic elimination of phenolic contaminants in wastewater: a nano approach at field scale. Appl Microbiol Biotechnol 98(7):3305–3316CrossRefGoogle Scholar
  18. 18.
    Koyyati R et al (2014) Antibacterial activity of silver nanoparticles synthesized using Amaranthus viridis twig extract. Int J Res Pharm Sci 5(1):32–39Google Scholar
  19. 19.
    Shankar S, Rhim J-W (2015) Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr Polym 130:353–363CrossRefGoogle Scholar
  20. 20.
    Thombre R et al (2013) Synthesis of silver nanoparticles and its cytotoxic effect against THP-1 cancer cell line. Int J Pharm Bio Sci 4:184–192Google Scholar
  21. 21.
    Okafor F et al (2013) Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int J Environ Res Public Health 10(10):5221–5238CrossRefGoogle Scholar
  22. 22.
    Namvar F et al (2016) Nanosized silver–palm pollen nanocomposite, green synthesis, characterization and antimicrobial activity. Res Chem Intermed 42(3):1571–1581CrossRefGoogle Scholar
  23. 23.
    Shameli K et al (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Cent J 6(1):73CrossRefGoogle Scholar
  24. 24.
    Tippayawat P et al (2016) Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ 4:e2589CrossRefGoogle Scholar
  25. 25.
    Madhanraj R, Eyini M, Balaji P (2017) Antioxidant assay of gold and silver nanoparticles from edible basidiomycetes mushroom fungi. Free Radic Antioxid 7(2):137–142CrossRefGoogle Scholar
  26. 26.
    Saddick S, Afifi M, Zinada OAA (2017) Effect of zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 24(7):1672–1678CrossRefGoogle Scholar
  27. 27.
    Sulaiman GM et al (2013) Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac J Trop Biomed 3(1):58–63CrossRefGoogle Scholar
  28. 28.
    Alon T et al (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1(10):1024CrossRefGoogle Scholar
  29. 29.
    Benjamin LE, Keshet E (1997) Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci 94(16):8761–8766CrossRefGoogle Scholar
  30. 30.
    Gerber H-P, Dixit V, Ferrara N (1998) Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 273(21):13313–13316CrossRefGoogle Scholar
  31. 31.
    Biroccio A et al (2000) Bcl-2 overexpression and hypoxia synergistically act to modulate vascular endothelial growth factor expression and in vivo angiogenesis in a breast carcinoma line. FASEB J 14(5):652–660CrossRefGoogle Scholar
  32. 32.
    Fernandez A et al (2001) Angiogenic potential of prostate carcinoma cells overexpressing bcl-2. J Natl Cancer Inst 93(3):208–213CrossRefGoogle Scholar
  33. 33.
    Iervolino A et al (2002) Bcl-2 overexpression in human melanoma cells increases angiogenesis through VEGF mRNA stabilization and HIF-1-mediated transcriptional activity. FASEB J 16(11):1453–1455CrossRefGoogle Scholar
  34. 34.
    Le Gouill S et al (2004) VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood 104(9):2886–2892CrossRefGoogle Scholar
  35. 35.
    Cuconati A et al (2003) DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev 17(23):2922–2932CrossRefGoogle Scholar
  36. 36.
    Willis SN et al (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19(11):1294–1305CrossRefGoogle Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  • Sahar Hajebi
    • 1
  • Masoud Homayouni Tabrizi
    • 1
    Email author
  • Mahboobeh Nakhaei Moghaddam
    • 1
  • Farzaneh Shahraki
    • 1
  • Soheyla Yadamani
    • 1
  1. 1.Department of BiologyIslamic Azad University, Mashhad BranchMashhadIran

Personalised recommendations