Effect of Crotalus basiliscus snake venom on the redox reaction of myoglobin

  • Ticyano P. de Souza
  • Dieric S. Abreu
  • Marta S. P. Carepo
  • Maria A. S. Silva
  • Dávila Zampieri
  • Marcos N. Eberlin
  • Tércio F. Paulo
  • Eduardo H. S. Sousa
  • Elisane Longhinotti
  • Izaura C. N. DiógenesEmail author
Original Paper


In this work, we have studied the effect of Crotalus basiliscus snake venom on the redox reaction of myoglobin (Mb), and by means of electrochemical techniques, we have shown that this reaction is undoubtedly affected following the interaction with the venom. Surface plasmon resonance, electrophoresis, UV–Vis, and circular dichroism showed that the interaction involves the attachment of some constituent of the venom to the protein, although not affecting its first and secondary structures. Mass spectra support this suggestion by showing the appearance of signals assigned to the Mb dimer and to a new species resulting from the interaction between Mb and the venom proteins. In addition, the mass spectra suggest the aromatic amino acids of myoglobin, mainly tryptophan and phenylalanine, are more exposed to the solvent medium upon the exposure to the venom solution. The results altogether indicate that the harmful effects of the venom of Crotalus basiliscus snake are likely connected to the blocking of the redox site of Mb.


Electrochemistry Modified electrode Myoglobin Snake venom Surface plasmon resonance 



I.C.N. Diógenes (# 307078/2017-5), T. F. Paulo (#428741/2016-9), E. Longhinotti (#306305/2015-1), and E.H.S. Sousa (# 312030/2015-0, #403866/2016-2) are thankful to CNPq and FUNCAP (PRONEX/2015 PR2-0101-00030.01.00/15 SPU No.: 3265612/2015) for the Grants and financial support. The authors are all grateful to P.V. Bernhardt (Queensland University) for his valuable comments and suggestions.

Supplementary material

775_2019_1636_MOESM1_ESM.pdf (527 kb)
Supplementary material 1 (PDF 527 kb)


  1. 1.
    Lewis RJ, Garcia ML (2003) Nat Rev Drug Discov 2:790–802CrossRefPubMedGoogle Scholar
  2. 2.
    Olivera BM, Teichert RW (2007) Mol Interv 7:251–260CrossRefPubMedGoogle Scholar
  3. 3.
    King GF (2011) Expert opin. Biol Ther 11:1469–1484Google Scholar
  4. 4.
    Gutierrez JM, Lomonte B (2013) Toxicon 62:27–39CrossRefPubMedGoogle Scholar
  5. 5.
    Fernandes CAH, Pazin WM, Dreyer TR, Bicev RN, Cavalcante WLG, Fortes-Dias CL, Ito AS, Oliveira CLP, Fernandez RM, Fontes MRM (2017) Sci Rep 7:43885CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mackessy SP (2010) Handbook of venoms and toxins of reptiles. Taylor & Francis Group, Boca Raton, FLGoogle Scholar
  7. 7.
    Mackessy SP (2010) Toxicon 55:1463–1474CrossRefPubMedGoogle Scholar
  8. 8.
    Segura A, Herrera M, Mares FR, Jaime C, Sánchez A, Vargas M, Villalta M, Gómez A, Gutiérrez JM, León G (2017) J Proteomics 158:62–72CrossRefPubMedGoogle Scholar
  9. 9.
    Gasanov SE, Dagda RK, Rael ED (2014) J Clin Toxicol 4:1–34CrossRefGoogle Scholar
  10. 10.
    Kini RM, Evans HJ (1989) Toxicon 27:613–635CrossRefPubMedGoogle Scholar
  11. 11.
    Logonder U, Jenko-Pražnikar Z, Scott-Davey T, Pungerčar J, Križaj I, Harris JB (2009) Exp Neurol 219:591–594CrossRefPubMedGoogle Scholar
  12. 12.
    Dixon RW, Harris JB (1996) J Neuropathol Exp Neurol 55:1230–1237CrossRefPubMedGoogle Scholar
  13. 13.
    Paoli M, Rigoni M, Koster G, Rossetto O, Montecucco C, Postle AD (2009) J Neurochem 111:737–744CrossRefPubMedGoogle Scholar
  14. 14.
    Xiang D, Wang X, Jia C, Lee T, Guo X (2016) Chem Rev 116:4318–4440CrossRefPubMedGoogle Scholar
  15. 15.
    Guo C, Yu X, Refaely-Abramson S, Sepunaru L, Bendikov T, Pecht I, Kronik L, Vilan A, Sheves M, Cahen D (2016) Proc Natl Acad Sci USA 113:10785–10790CrossRefPubMedGoogle Scholar
  16. 16.
    Casalini S, Berto M, Kovtun A, Operamolla A, Di Rocco G, Facci P, Liscio A, Farinola GM, Borsari M, Bortolotti CA (2015) Electrochim Acta 178:638–646CrossRefGoogle Scholar
  17. 17.
    Hosseinzadeh P, Lu Y (2016) Biochim. Biophys Acta Bioenerg 1857:557–581CrossRefGoogle Scholar
  18. 18.
    Gray HB, Winkler JR (2010) Biochim. Biophys Acta Bioenerg 1797:1563–1572CrossRefGoogle Scholar
  19. 19.
    Endeward V, Gros G, Jürgens KD (2010) Cardiovasc Res 87:22–29CrossRefPubMedGoogle Scholar
  20. 20.
    Ener ME (2017) Biochemistry 56:3531–3538CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Reeder BJ, Wilson MT (2005) Curr Med Chem 12:2741–2751CrossRefPubMedGoogle Scholar
  22. 22.
    Giulivi C, Cadenas E (1993) FEBS Lett 332:287–290CrossRefPubMedGoogle Scholar
  23. 23.
    Paulo TF, Diógenes ICN, Abruña HD (2011) Langmuir 27:2052–2057CrossRefGoogle Scholar
  24. 24.
    Guto PM, Rusling JF (2006) Electrochem Commun 8:455–459CrossRefGoogle Scholar
  25. 25.
    Armstrong FA (1990) Bioinorganic Chemistry. Springer, BerlinGoogle Scholar
  26. 26.
    Diógenes ICN, Nart FC, Temperini MLA, Moreira IS (2001) Inorg Chem 40:4884–4889CrossRefPubMedGoogle Scholar
  27. 27.
    Paulo TF, de Sousa TP, Abreu DS, Felício NH, Bernhardt PV, Lopes LGF, Sousa EHS, Diógenes ICN (2013) J Phys Chem B 117:8673–8680CrossRefGoogle Scholar
  28. 28.
    Zhang H-M, Li N-Q (2001) Bioelectrochemistry 53:97–101CrossRefPubMedGoogle Scholar
  29. 29.
    Schlereth DD, Mantele W (1992) Biochemistry 31:7494–7502CrossRefPubMedGoogle Scholar
  30. 30.
    Malmqvist M (1993) Nature 361:186–187CrossRefPubMedGoogle Scholar
  31. 31.
    Zubritsky E (2000) Anal Chem 72:289A–292APubMedGoogle Scholar
  32. 32.
    Platt JR (1956) Radiation in biology. McGraw-Hill Book Company Inc, New YorkGoogle Scholar
  33. 33.
    Gray HB, Winkler JR (2003) Q Rev Biophys 36:341–372CrossRefPubMedGoogle Scholar
  34. 34.
    Mosafer KS, Behrooz A, Ranei SSO, Mohammad M, Hassan R, Parviz G, Alireza G (2015) Curr Proteomics 12:45–55CrossRefGoogle Scholar
  35. 35.
    Yanes O, Avilés FX, Wenzel R, Nazabal A, Zenobi R, Calvete JJ (2007) J Am Soc Mass Spectrom 18:600–606CrossRefPubMedGoogle Scholar
  36. 36.
    Georgieva D, Öhler M, Seifert J, Bergen MV, Arni RK, Genov N, Betzel C (2010) J Proteome Res 9:2302–2316CrossRefPubMedGoogle Scholar
  37. 37.
    Roodt A, Fernández J, Solano D, Lomonte B (2018) Toxicon 148:143–148CrossRefPubMedGoogle Scholar
  38. 38.
    Lomonte B, Tsai WC, Ureña-Diaz JM, Sanz L, Mora-Obando D, Sánchez EE, Fry BG, Gutiérrez JM, Sovic Gibbs HL (2014) J Proteomics 96:103–116CrossRefPubMedGoogle Scholar
  39. 39.
    Antonini E, Brunori M (1971) Elsevier. North-Holland, AmsterdamGoogle Scholar
  40. 40.
    Sawyer DT, Sobkowiak A, Julian J, Roberts L (1995) Electrochemistry for chemists. Wiley, HobokenGoogle Scholar
  41. 41.
    Laemmli UK (1970) Nature 227:680–685CrossRefPubMedGoogle Scholar

Copyright information

© Society for Biological Inorganic Chemistry (SBIC) 2019

Authors and Affiliations

  1. 1.Departamento de Química Orgânica e InorgânicaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  3. 3.LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  4. 4.ThoMSon Mass Spectrometry Laboratory, Institute of ChemistryUniversity of CampinasCampinasBrazil
  5. 5.Departamento de Química Analítica e Físico-QuímicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations