JBIC Journal of Biological Inorganic Chemistry

, Volume 23, Issue 8, pp 1185–1204 | Cite as

Potential applications of engineered nanoparticles in medicine and biology: an update

  • Gudepalya Renukaiah RudramurthyEmail author
  • Mallappa Kumara SwamyEmail author


Nanotechnology advancements have led to the development of its allied fields, such as nanoparticle synthesis and their applications in the field of biomedicine. Nanotechnology driven innovations have given a hope to the patients as well as physicians in solving the complex medical problems. Nanoparticles with a size ranging from 0.2 to 100 nm are associated with an increased surface to volume ratio. Moreover, the physico-chemical and biological properties of nanoparticles can be modified depending on the applications. Different nanoparticles have been documented with a wide range of applications in various fields of medicine and biology including cancer therapy, drug delivery, tissue engineering, regenerative medicine, biomolecules detection, and also as antimicrobial agents. However, the development of stable and effective nanoparticles requires a profound knowledge on both physico-chemical features of nanomaterials and their intended applications. Further, the health risks associated with the use of engineered nanoparticles needs a serious attention.

Graphical Abstract


Biomedicine Biomolecule detection Cancer therapy Drug delivery Engineered nanoparticles Regenerative medicine Tissue engineering 


Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.


  1. 1.
    Feynman RP (1992) There’s plenty of room at the bottom [data storage]. J Microelectromechanical Syst 1:60–66Google Scholar
  2. 2.
    Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21:836Google Scholar
  3. 3.
    Choi J, Wang NS (2011) Nanoparticles in biomedical applications and their safety concerns. In: Fazel R (ed) Biomedical engineering–from theory to applications. InTech, Maasticht, pp 299–314Google Scholar
  4. 4.
    Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects—pros and cons. Environ Health Perspect 114:1818PubMedPubMedCentralGoogle Scholar
  5. 5.
    Xia Tian, Li Ning, Nel AE (2009) Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150PubMedGoogle Scholar
  6. 6.
    Grillo R, Rosa AH, Fraceto LF (2015) Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere 119:608–619CrossRefGoogle Scholar
  7. 7.
    Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. Natural Polymer Drug Delivery Systems Springer, 33–93Google Scholar
  8. 8.
    Pangi Z, Beletsi A, Evangelatos K (2003) PEG-ylated nanoparticles for biological and pharmaceutical application. Adv Drug Del Rev 24:403–419Google Scholar
  9. 9.
    Hett A (2004) Nanotechnology: small matter. Many unknowns Swiss Reinsurance Company, ZurichGoogle Scholar
  10. 10.
    Banerjee (2001) Liposomes: applications in medicine. J Biomater Appl 16:3–21PubMedGoogle Scholar
  11. 11.
    Yang L, Webster TJ (2009) Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin Drug Deliv 6:851–864PubMedGoogle Scholar
  12. 12.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20PubMedGoogle Scholar
  13. 13.
    Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2:8–21Google Scholar
  14. 14.
    Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92:1343–1355PubMedGoogle Scholar
  15. 15.
    Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43PubMedGoogle Scholar
  16. 16.
    Lee P, Lin R, Moon J, Lee LP (2006) Microfluidic alignment of collagen fibers for in vitro cell culture. Biomed Microdevice 8:35–41Google Scholar
  17. 17.
    Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6:12–21PubMedGoogle Scholar
  18. 18.
    Skandalis N, Dimopoulou A, Georgopoulou A, Gallios N, Papadopoulos D, Tsipas D et al (2017) The effect of silver nanoparticles size, produced using plant extract from Arbutus unedo, on their antibacterial efficacy. Nanomaterials 7:178PubMedCentralGoogle Scholar
  19. 19.
    Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1:172–179PubMedGoogle Scholar
  20. 20.
    Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511PubMedGoogle Scholar
  21. 21.
    Rai VR, Bai AJ (2011) Nanoparticles and their potential application as antimicrobials. Formatex, MysoreGoogle Scholar
  22. 22.
    Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126:187–204PubMedGoogle Scholar
  23. 23.
    Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35:174–211Google Scholar
  24. 24.
    Bessa PC, Machado R, Nürnberger S, Dopler D, Banerjee A, Cunha AM et al (2010) Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. J Control Release 142:312–318PubMedGoogle Scholar
  25. 25.
    Matsuo T, Sugita T, Kubo T, Yasunaga Y, Ochi M, Murakami T (2003) Injectable magnetic liposomes as a novel carrier of recombinant human BMP-2 for bone formation in a rat bone-defect model. J Biomed Mater Res A 66:747–754PubMedGoogle Scholar
  26. 26.
    Tanaka H, Sugita T, Yasunaga Y, Shimose S, Deie M, Kubo T et al (2005) Efficiency of magnetic liposomal transforming growth factor-beta 1 in the repair of articular cartilage defects in a rabbit model. J Biomed Mater Res A 73:255–263PubMedGoogle Scholar
  27. 27.
    Herbst SM, Klegerman ME, Kim H, Qi J, Shelat H, Wassler M et al (2009) Delivery of stem cells to porcine arterial wall with echogenic liposomes conjugated to antibodies against CD34 and intercellular adhesion molecule-1. Mol Pharm 7:3–11Google Scholar
  28. 28.
    Moura V, Lacerda M, Figueiredo P, Corvo ML, Cruz ME, Soares R et al (2012) Targeted and intracellular triggered delivery of therapeutics to cancer cells and the tumor microenvironment: impact on the treatment of breast cancer. Breast Cancer Res Treat 133:61–73PubMedGoogle Scholar
  29. 29.
    Dai Y-Q, Qin G, Geng S-Y, Yang B, Xu Q, Wang J-Y (2012) Photo-responsive release of ascorbic acid and catalase in CDBA-liposome for commercial application as a sunscreen cosmetic. RSC Adv 2:3340–3346Google Scholar
  30. 30.
    Adibkia K, Omidi Y, Siahi MR, Javadzadeh AR, Barzegar-Jalali M, Barar J et al (2007) Inhibition of endotoxin-induced uveitis by methylprednisolone acetate nanosuspension in rabbits. J Ocul Pharmacol Ther 23:421–432PubMedGoogle Scholar
  31. 31.
    Tiwari PM, Vig K, Dennis VA, Singh SR (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1:31–63PubMedPubMedCentralGoogle Scholar
  32. 32.
    Zinjarde S (2012) Bio-inspired nanomaterials and their applications as antimicrobial agents. Chron Young Sci 3:74–81Google Scholar
  33. 33.
    Bahrami K, Nazari P, Nabavi M, Golkar M, Almasirad A, Shahverdi AR (2014) Hydroxyl capped silver–gold alloy nanoparticles: characterization and their combination effect with different antibiotics against Staphylococcus aureus. Nanomed J 1:155–161Google Scholar
  34. 34.
    Dizaj SM, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5:19Google Scholar
  35. 35.
    Nam J-M, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886PubMedGoogle Scholar
  36. 36.
    Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237PubMedGoogle Scholar
  37. 37.
    Osterfeld SJ, Yu H, Gaster RS, Caramuta S, Xu L, Han S-J et al (2008) Multiplex protein assays based on real-time magnetic nanotag sensing. Proc Natl Acad Sci 105:20637–20640PubMedGoogle Scholar
  38. 38.
    Hillaireau H, Couvreur P (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66:2873–2896PubMedGoogle Scholar
  39. 39.
    Kim BYRJ, Chan WC (2010) Nanomedicine. N Engl J Med 363:2434–2443PubMedGoogle Scholar
  40. 40.
    Monteiro N, Martins A, Reis RL, Neves NM (2015) Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regen Ther 1:109–118Google Scholar
  41. 41.
    Jin J, Zhang L, Shi M, Zhang Y, Wang Q (2017) Ti-GO-Ag nanocomposite: the effect of content level on the antimicrobial activity and cytotoxicity. Int J Nanomed 12:4209Google Scholar
  42. 42.
    Vi TTT, Rajesh Kumar S, Rout B, Liu C-H, Wong C-B, Chang C-W et al (2018) The preparation of graphene oxide-silver nanocomposites: the effect of silver loads on Gram-positive and Gram-negative antibacterial activities. Nanomaterials 8:163PubMedCentralGoogle Scholar
  43. 43.
    Huang L, Yang H, Zhang Y, Xiao W (2016) Study on synthesis and antibacterial properties of Ag NPs/GO nanocomposites. J Nanomater. CrossRefGoogle Scholar
  44. 44.
    Han C, Romero N, Fischer S, Dookran J, Berger A, Doiron AL (2017) Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnol Rev 6:383–404Google Scholar
  45. 45.
    El-Boubbou K (2018) Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery. Nanomedicine 13:929–952PubMedGoogle Scholar
  46. 46.
    Chakraborty AK, Roy T, Mondal S (2016) Development of DNA Nanotechnology and uses in molecular medicine and biology. Insights Biomed 1:2Google Scholar
  47. 47.
    Yazdi MH, Sepehrizadeh Z, Mahdavi M, Shahverdi AR, Faramarzi MA (2016) Metal, metalloid, and oxide nanoparticles for therapeutic and diagnostic oncology. Nano Biomed Eng 8:246–267Google Scholar
  48. 48.
    Chidambaram M, Manavalan R, Kathiresan K (2011) Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci 14:67–77PubMedGoogle Scholar
  49. 49.
    Vinogradov S, Wei X (2012) Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine 7:597–615PubMedGoogle Scholar
  50. 50.
    Derya İlem-Özdemir EG, Ekinci M, Aşikoğlu M (2016) Nanoparticles: from diagnosis to therapy. Int J Med Nano Res 3:15Google Scholar
  51. 51.
    Subbiah R, Veerapandian M, Yun SK (2010). Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem 17:4559–4577PubMedGoogle Scholar
  52. 52.
    Nguyen KT (2011) Targeted nanoparticles for cancer therapy: promises and challenge. J Nanomedic Nanotechnol. CrossRefGoogle Scholar
  53. 53.
    Banerjee D, Sengupta S (2011) Nanoparticles in cancer chemotherapy. Prog Mol Biol Transl Sci 104:489–507PubMedGoogle Scholar
  54. 54.
    Gmeiner WH, Ghosh S (2014) Nanotechnology for cancer treatment. Nanotechnol Rev 3:111–122Google Scholar
  55. 55.
    Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198PubMedPubMedCentralGoogle Scholar
  56. 56.
    Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53:12320–12364Google Scholar
  57. 57.
    Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Reg 41:189–207Google Scholar
  58. 58.
    Jain S, Hirst D (2012) O’sullivan J. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85:101–113PubMedPubMedCentralGoogle Scholar
  59. 59.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Can Res 46:6387–6392Google Scholar
  60. 60.
    Fang M, Chen J-H, Xu X-L, Yang P-H, Hildebrand HF (2006) Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents 27:513–517PubMedGoogle Scholar
  61. 61.
    Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25PubMedGoogle Scholar
  62. 62.
    Yin H, Liao L, Fang J (2014) Enhanced permeability and retention (EPR) effect based tumor targeting: the concept, application and prospect. JSM Clin Oncol Res 2:1010Google Scholar
  63. 63.
    Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P (2011) Inorganic nanoparticles in cancer therapy. Pharm Res 28:237–259PubMedGoogle Scholar
  64. 64.
    Stylianopoulos T, Wong C, Bawendi MG, Jain RK, Fukumura D (2012) Multistage nanoparticles for improved delivery into tumor tissue. Methods Enzymol 508:109–130PubMedPubMedCentralGoogle Scholar
  65. 65.
    Deshpande PPBS, Torchilin VP (2013) Current trends in the use of liposomes for tumor targeting. Nanomedicine 8:1509–1528 (Lond) PubMedGoogle Scholar
  66. 66.
    Huwyler J, Drewe J, Krähenbühl S (2008) Tumor targeting using liposomal antineoplastic drugs. Int J Nanomed 3:21Google Scholar
  67. 67.
    Alexis F, Pridgen EM, Langer R, Farokhzad OC (2010) Nanoparticle technologies for cancer therapy. In: Schäfer-Korting M (ed) Drug delivery. Handbook of experimental pharmacology, vol 197. Springer, Berlin, Heidelberg, pp 55–86Google Scholar
  68. 68.
    Voinea M, Simionescu M (2002) Designing of ‘intelligent’liposomes for efficient delivery of drugs. J Cell Mol Med 6:465–474PubMedGoogle Scholar
  69. 69.
    Needham D, McIntosh T, Lasic D (1992) Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembr 1108:40–48Google Scholar
  70. 70.
    Unezaki S, Maruyama K, Takahashi N, Koyama M, Yuda T, Suginaka A et al (1994) Enhanced delivery and antitumor activity of doxorubicin using long-circulating thermosensitive liposomes containing amphipathic polyethylene glycol in combination with local hyperthermia. Pharm Res 11:1180–1185PubMedGoogle Scholar
  71. 71.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284PubMedGoogle Scholar
  72. 72.
    Watanabe K, Kaneko M, Maitani Y (2012) Functional coating of liposomes using a folate–polymer conjugate to target folate receptors. Int J Nanomed 7:3679Google Scholar
  73. 73.
    Liu Y, Xu S, Teng L, Yung B, Zhu J, Ding H et al (2011) Synthesis and evaluation of a novel lipophilic folate receptor targeting ligand. Anticancer Res 31:1521–1525PubMedGoogle Scholar
  74. 74.
    Parvanian S, Mostafavi SM, Aghashiri M (2017) Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sens Bio-Sensing Res 1:81–87Google Scholar
  75. 75.
    Wang Y, Gao S, Ye W-H, Yoon HS, Yang Y-Y (2006) Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater 5:791PubMedGoogle Scholar
  76. 76.
    Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T et al (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436:568PubMedGoogle Scholar
  77. 77.
    Zhu C, Jung S, Luo S, Meng F, Zhu X, Park TG et al (2010) Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA–PCL–PDMAEMA triblock copolymers. Biomaterials 31:2408–2416PubMedGoogle Scholar
  78. 78.
    Zhang L, Radovic-Moreno AF, Alexis F, Gu FX, Basto PA, Bagalkot V et al (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle–aptamer bioconjugates. Chem Med Chem 2:1268–1271PubMedGoogle Scholar
  79. 79.
    Mishra DK, Shandilya R, Mishra P (2018) Lipid based nanocarriers: a translational perspective. Nanomed Nanotechnol Biol Med 14(7):2023–2050Google Scholar
  80. 80.
    Prabhu RH, Patravale VB, Joshi MD (2015) Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomed 10:1001Google Scholar
  81. 81.
    Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131PubMedGoogle Scholar
  82. 82.
    Discher DE, Ortiz V, Srinivas G, Klein ML, Kim Y, Christian D et al (2007) Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors. Prog Polym Sci 32:838–857PubMedPubMedCentralGoogle Scholar
  83. 83.
    Meng F, Zhong Z, Feijen J (2009) Stimuli-responsive polymersomes for programmed drug delivery. Biomacromol 10:197–209Google Scholar
  84. 84.
    Lee CC, MacKay JA, Fréchet JM, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517PubMedGoogle Scholar
  85. 85.
    Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275Google Scholar
  86. 86.
    Bellomo EG, Wyrsta MD, Pakstis L, Pochan DJ, Deming TJ (2004) Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nat Mater 3:244PubMedGoogle Scholar
  87. 87.
    Peracchia M, Harnisch S, Pinto-Alphandary H, Gulik A, Dedieu J, Desmaele D et al (1999) Visualization of in vitro protein-rejecting properties of PEGylated stealth® polycyanoacrylate nanoparticles. Biomaterials 20:1269–1275PubMedGoogle Scholar
  88. 88.
    Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S et al (2000) ‘Stealth’corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B 18:301–313Google Scholar
  89. 89.
    Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62:90–99PubMedGoogle Scholar
  90. 90.
    Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R et al (1999) Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents—drug-polymer conjugates. Clin Cancer Res 5:83–94PubMedGoogle Scholar
  91. 91.
    Singer JW (2005) Paclitaxel poliglumex (XYOTAX™, CT-2103): a macromolecular taxane. J Control Release 109:120–126PubMedGoogle Scholar
  92. 92.
    Mitra AK, Cholkar K, Mandal A (2017) Emerging nanotechnologies for diagnostics, drug delivery and medical devices. In: Cholkar K, Acharya G, Trinh HM, Singh G (eds) Therapeutic applications of polymeric materials. Elsevier, New York, pp 1–19Google Scholar
  93. 93.
    Li C (2002) Poly (l-glutamic acid)–anticancer drug conjugates. Adv Drug Deliv Rev 54:695–713PubMedGoogle Scholar
  94. 94.
    Matsumura Y (2008) Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev 60:899–914PubMedGoogle Scholar
  95. 95.
    Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim S-B et al (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108:241–250PubMedGoogle Scholar
  96. 96.
    Wiradharma NZY, Venkataraman S, Hedrick JL, Yang YY (2009) Self-assembled polymer nanostructures for delivery of anticancer therapeutics. Nano Today 4:302–317Google Scholar
  97. 97.
    Ke X-Y, Ng VWL, Gao S-J, Tong YW, Hedrick JL, Yang YY (2014) Co-delivery of thioridazine and doxorubicin using polymeric micelles for targeting both cancer cells and cancer stem cells. Biomaterials 35:1096–1108PubMedGoogle Scholar
  98. 98.
    Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Kim SW et al (2001) In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release 72:191–202PubMedGoogle Scholar
  99. 99.
    Kim D-W, Kim S-Y, Kim H-K, Kim S-W, Shin S, Kim J et al (2007) Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 18:2009–2014PubMedGoogle Scholar
  100. 100.
    Palmerston Mendes L, Pan J, Torchilin VP (2017) Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22:1401PubMedCentralGoogle Scholar
  101. 101.
    Zhong Q, Bielski ER, Rodrigues LS, Brown MR, Reineke JJ, da Rocha SR (2016) Conjugation to poly (amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol Pharm 13:2363–2375PubMedGoogle Scholar
  102. 102.
    Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I et al (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19:1310–1316PubMedGoogle Scholar
  103. 103.
    Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y (2014) Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res Int. CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Tarhini M, Greige-Gerges H, Elaissari A (2017) Protein-based nanoparticles: from preparation to encapsulation of active molecules. Int J Pharm 522:172–197PubMedGoogle Scholar
  105. 105.
    Nyman DW, Campbell KJ, Hersh E, Long K, Richardson K, Trieu V et al (2005) Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J Clin Oncol 23:7785–7793PubMedGoogle Scholar
  106. 106.
    Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A et al (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12:1317–1324PubMedGoogle Scholar
  107. 107.
    Srinivas G, Discher DE, Klein ML (2004) Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nat Mater 3:638PubMedGoogle Scholar
  108. 108.
    Ahmed F, Pakunlu RI, Srinivas G, Brannan A, Bates F, Klein ML et al (2006) Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol Pharm 3:340–350PubMedGoogle Scholar
  109. 109.
    Hou B, Zheng B, Yang W, Dong C, Wang H, Chang J (2017) Construction of near infrared light triggered nanodumbbell for cancer photodynamic therapy. J Colloid Interface Sci 494:363–372PubMedGoogle Scholar
  110. 110.
    Xin Y, Yin M, Zhao L, Meng F, Luo L (2017) Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 14:228PubMedPubMedCentralGoogle Scholar
  111. 111.
    Bayda S, Hadla M, Palazzolo S, Corona G, Toffoli G, Rizzolio F (2017) Inorganic nanoparticles for cancer therapy: a transition from lab to clinic. Curr Med Chem. CrossRefPubMedGoogle Scholar
  112. 112.
    Abbasi E, Kafshdooz T, Bakhtiary M, Nikzamir N, Nikzamir N, Nikzamir M et al (2016) Biomedical and biological applications of quantum dots. Artif Cell Nanomed Biotechnol 44:885–891Google Scholar
  113. 113.
    Chattopadhyay S, Dash SK, Mandal D, Das B, Tripathy S, Dey A et al (2016) Metal based nanoparticles as cancer antigen delivery vehicles for macrophage based antitumor vaccine. Vaccine 34:957–967PubMedGoogle Scholar
  114. 114.
    Chattopadhyay S, Dash SK, Tripathy S, Pramanik P, Roy S (2015) Phosphonomethyl iminodiacetic acid-conjugated cobalt oxide nanoparticles liberate Co ++ ion-induced stress associated activation of TNF-α/p38 MAPK/caspase 8-caspase 3 signaling in human leukemia cells. J Biol Inorg Chem 20:123–141PubMedGoogle Scholar
  115. 115.
    Chattopadhyay S, Dash SK, Mahapatra SK, Tripathy S, Ghosh T, Das B et al (2014) Chitosan-modified cobalt oxide nanoparticles stimulate TNF-α-mediated apoptosis in human leukemic cells. J Biol Inorg Chem 19:399–414PubMedGoogle Scholar
  116. 116.
    Farrer NJ, Salassa L, Sadler PJ (2009) Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans 48:10690–10701Google Scholar
  117. 117.
    Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la Garza-Ramos MA et al (2012) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomed 7:2109Google Scholar
  118. 118.
    Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665Google Scholar
  119. 119.
    Her S, Jaffray DA, Allen C (2017) Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev 109:84–101PubMedGoogle Scholar
  120. 120.
    Spyratou E, Makropoulou M, Efstathopoulos EP, Georgakilas AG, Sihver L (2017) Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers 9:173PubMedCentralGoogle Scholar
  121. 121.
    Abadeer NS, Murphy CJ (2016) Recent progress in cancer thermal therapy using gold nanoparticles. J Phy Chem C 120:4691–4716Google Scholar
  122. 122.
    Bagheri S, Yasemi M, Safaie-Qamsari E, Rashidiani J, Abkar M, Hassani M et al (2018) Using gold nanoparticles in diagnosis and treatment of melanoma cancer. Artif Cells Blood Substit Biotechnol. CrossRefGoogle Scholar
  123. 123.
    Huang X, O’Connor R, Kwizera EA (2017) Gold nanoparticle based platforms for circulating cancer marker detection. Nanotheranostics 1:80–102 (Sydney, NSW) PubMedPubMedCentralGoogle Scholar
  124. 124.
    Barai AC, Paul K, Dey A, Manna S, Roy S, Bag BG et al (2018) Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity. Nano Converg 5:10PubMedPubMedCentralGoogle Scholar
  125. 125.
    Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315PubMedGoogle Scholar
  126. 126.
    Rana S, Bajaj A, Mout R, Rotello VM (2012) Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 64:200–216PubMedGoogle Scholar
  127. 127.
    Mieszawska AJ, Mulder WJ, Fayad ZA, Cormode DP (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 10:831–847PubMedPubMedCentralGoogle Scholar
  128. 128.
    Mi Y, Shao Z, Vang J, Kaidar-Person O, Wang AZ (2016) Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol 7:11PubMedPubMedCentralGoogle Scholar
  129. 129.
    Schuemann J, Berbeco R, Chithrani DB, Cho SH, Kumar R, McMahon SJ et al (2016) Roadmap to clinical use of gold nanoparticles for radiation sensitization. International Journal of Radiation Oncology• Biology•. Physics 94:189–205Google Scholar
  130. 130.
    Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P (2010) Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev 62:346–361PubMedGoogle Scholar
  131. 131.
    Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S et al (2008) Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res 68:1970–1978PubMedGoogle Scholar
  132. 132.
    Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145PubMedGoogle Scholar
  133. 133.
    Hirsch LR, Stafford RJ, Bankson J, Sershen SR, Rivera B, Price R et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci 100:13549–13554PubMedGoogle Scholar
  134. 134.
    Stern JM, Stanfield J, Lotan Y, Park S, Hsieh J-T, Cadeddu JA (2007) Efficacy of laser-activated gold nanoshells in ablating prostate cancer cells in vitro. J Endourol 21:939–943PubMedGoogle Scholar
  135. 135.
    Jain KK (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn 3:153–161PubMedGoogle Scholar
  136. 136.
    Bernstein AL, Dhanantwari A, Jurcova M, Cheheltani R, Naha PC, Ivanc T et al (2016) Improved sensitivity of computed tomography towards iodine and gold nanoparticle contrast agents via iterative reconstruction methods. Sci Rep 6:26177PubMedPubMedCentralGoogle Scholar
  137. 137.
    Liao S, Chan CK, Ramakrishna S (2008) Stem cells and biomimetic materials strategies for tissue engineering. Mater Sci Eng C 28:1189–1202Google Scholar
  138. 138.
    Chung BGKL, Khademhosseini A (2007) Micro- and nanoscale technologies for tissue engineering and drug discovery applications. Expert Opin Drug Discov 2:1653–1668PubMedGoogle Scholar
  139. 139.
    Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13PubMedPubMedCentralGoogle Scholar
  140. 140.
    Quaglia F (2008) Bioinspired tissue engineering: the great promise of protein delivery technologies. Int J Pharm 364:281–297PubMedGoogle Scholar
  141. 141.
    Santo VE, Duarte ARC, Popa EG, Gomes ME, Mano JF, Reis RL (2012) Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming. J Control Release 162:19–27PubMedGoogle Scholar
  142. 142.
    Santo VE, Gomes ME, Mano JF, Reis RL (2013) Controlled release strategies for bone, cartilage, and osteochondral engineering—part I: recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng B Rev 19:308–326Google Scholar
  143. 143.
    Xing Z-C, Han S-J, Shin Y-S, Kang I-K (2011) Fabrication of biodegradable polyester nanocomposites by electrospinning for tissue engineering. J Nanomater. CrossRefGoogle Scholar
  144. 144.
    Li C, Vepari C, Jin H-J, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27:3115–3124PubMedGoogle Scholar
  145. 145.
    Silva G, Pedro A, Costa F, Neves N, Coutinho O, Reis R (2005) Soluble starch and composite starch bioactive glass 45S5 particles: synthesis, bioactivity, and interaction with rat bone marrow cells. Mater Sci Eng C 25:237–246Google Scholar
  146. 146.
    Habraken W, Wolke J, Jansen J (2007) Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:234–248PubMedGoogle Scholar
  147. 147.
    Luz GM, Mano JF (2012) Chitosan/bioactive glass nanoparticles composites for biomedical applications. Biomed Mater 7:054104PubMedGoogle Scholar
  148. 148.
    Martins A, Reis RL, Neves NM (2013) Electrospinning: processing technique for tissue engineering scaffolding. J Int Mater Rev 53:257–274Google Scholar
  149. 149.
    Poste GKR (1983) Site–specific (targeted) drug delivery in cancer therapy. Nat Biotechnol 1:869–878Google Scholar
  150. 150.
    Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z (2016) Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater. CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Rabanel M (2012) J, Aoun V, Elkin I, Mokhtar M, Hildgen P. Drug-loaded nanocarriers: passive targeting and crossing of biological barriers. Curr Med Chem 19:3070–3102PubMedGoogle Scholar
  152. 152.
    Mercado AE, Ma J, He X, Jabbari E (2009) Release characteristics and osteogenic activity of recombinant human bone morphogenetic protein-2 grafted to novel self-assembled poly (lactide-co-glycolide fumarate) nanoparticles. J Control Release 140:148–156PubMedPubMedCentralGoogle Scholar
  153. 153.
    Chen L, Liu L, Li C, Tan Y, Zhang G (2011) A new growth factor controlled drug release system to promote healing of bone fractures: nanospheres of recombinant human bone morphogenetic-2 and polylactic acid. J Nanosci Nanotechnol 11:3107–3114PubMedGoogle Scholar
  154. 154.
    Oliveira JM, Sousa RA, Kotobuki N, Tadokoro M, Hirose M, Mano JF et al (2009) The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly (amidoamine) dendrimer nanoparticles. Biomaterials 30:804–813PubMedGoogle Scholar
  155. 155.
    Shah DA, Kwon S-J, Bale SS, Banerjee A, Dordick JS, Kane RS (2011) Regulation of stem cell signaling by nanoparticle-mediated intracellular protein delivery. Biomaterials 32:3210–3219PubMedGoogle Scholar
  156. 156.
    Fanord F, Fairbairn K, Kim H, Garces A, Bhethanabotla V, Gupta VK (2010) Bisphosphonate-modified gold nanoparticles: a useful vehicle to study the treatment of osteonecrosis of the femoral head. Nanotechnology 22:035102PubMedGoogle Scholar
  157. 157.
    Jensen T, Baas J, Dolathshahi-Pirouz A, Jacobsen T, Singh G, Nygaard JV et al (2011) Osteopontin functionalization of hydroxyapatite nanoparticles in a PDLLA matrix promotes bone formation. J Biomed Mater Res A 99:94–101PubMedPubMedCentralGoogle Scholar
  158. 158.
    Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS et al (2015) Nanotechnology in bone tissue engineering. Nanomed Nanotechnol Biol Med 11:1253–1263Google Scholar
  159. 159.
    Chou LY, Ming K, Chan WC (2011) Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 40:233–245PubMedGoogle Scholar
  160. 160.
    Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16PubMedGoogle Scholar
  161. 161.
    Li Y, Kröger M, Liu WK (2015) Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk. Nanoscale 7:16631–16646PubMedGoogle Scholar
  162. 162.
    Saha RN, Vasanthakumar S, Bende G, Snehalatha M (2010) Nanoparticulate drug delivery systems for cancer chemotherapy. Mol Membr Biol 27:215–231PubMedGoogle Scholar
  163. 163.
    Sahu A, Choi WI, Lee JH, Tae G (2013) Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials 34:6239–6248PubMedGoogle Scholar
  164. 164.
    Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X et al (2013) Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc 135:4799–4804PubMedGoogle Scholar
  165. 165.
    Kansara K, Patel P, Shukla RK, Pandya A, Shanker R, Kumar A et al (2018) Synthesis of biocompatible iron oxide nanoparticles as a drug delivery vehicle. Int J Nanomed 13:79Google Scholar
  166. 166.
    McBain SC, Yiu HH, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomed 3:169Google Scholar
  167. 167.
    Schleich N, Po C, Jacobs D, Ucakar B, Gallez B, Danhier F et al (2014) Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release 194:82–91PubMedGoogle Scholar
  168. 168.
    Zare T, Sattarahmady N (2016) A mini-review of magnetic nanoparticles: applications in biomedicine. Basic Clin Cancer Res 7:29–39Google Scholar
  169. 169.
    Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63PubMedPubMedCentralGoogle Scholar
  170. 170.
    Holzinger M, Le Goff A, Cosnier S (2017) Synergetic effects of combined nanomaterials for biosensing applications. Sensors 17:1010Google Scholar
  171. 171.
    Su J, Goldberg AF, Stoltz BM (2016) Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci Appl 5:e16001PubMedPubMedCentralGoogle Scholar
  172. 172.
    Lu K, Aung T, Guo N, Weichselbaum R, Lin W (2018) Nanoscale metal–organic frameworks for therapeutic, imaging, and sensing applications. Adv Mater. CrossRefPubMedGoogle Scholar
  173. 173.
    He C, Lu K, Lin W (2014) Nanoscale metal–organic frameworks for real-time intracellular pH sensing in live cells. J Am Chem Soc 136:12253–12256PubMedPubMedCentralGoogle Scholar
  174. 174.
    Xu R, Wang Y, Duan X, Lu K, Micheroni D, Hu A et al (2016) Nanoscale metal–organic frameworks for ratiometric oxygen sensing in live cells. J Am Chem Soc 138:2158–2161PubMedPubMedCentralGoogle Scholar
  175. 175.
    Wu P, Wang J, He C, Zhang X, Wang Y, Liu T et al (2012) Luminescent metal-organic frameworks for selectively sensing nitric oxide in an aqueous solution and in living cells. Adv Funct Mater 22:1698–1703Google Scholar
  176. 176.
    Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol Med 18:321–336Google Scholar
  177. 177.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346PubMedGoogle Scholar
  178. 178.
    Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593PubMedPubMedCentralGoogle Scholar
  179. 179.
    Sarkar S, Jana AD, Samanta SK, Mostafa G (2007) Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron 26:4419–4426Google Scholar
  180. 180.
    Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225103Google Scholar
  181. 181.
    Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med 3:168–171Google Scholar
  182. 182.
    Swamy MK, Sudipta K, Jayanta K, Balasubramanya S (2015) The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl Nanosci 5:73–81Google Scholar
  183. 183.
    Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR (2015) Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim Acta Part A Mol Biomol Spectrosc 151:939–944Google Scholar
  184. 184.
    Akhtar M, Swamy MK, Umar A, Sahli A, Abdullah A (2015) Biosynthesis and characterization of silver nanoparticles from methanol leaf extract of Cassia didymobotrya and assessment of their antioxidant and antibacterial activities. J Nanosci Nanotechnol 15:9818–9823PubMedGoogle Scholar
  185. 185.
    Mandal D, Dash SK, Das B, Chattopadhyay S, Ghosh T, Das D et al (2016) Bio-fabricated silver nanoparticles preferentially targets Gram positive depending on cell surface charge. Biomed Pharmacother 83:548–558PubMedGoogle Scholar
  186. 186.
    Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S et al (2017) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10:862–876Google Scholar
  187. 187.
    Yamamoto O, Sawai J, Sasamoto T (2000) Change in antibacterial characteristics with doping amount of ZnO in MgO–ZnO solid solution. Int J Inorg Mater 2:451–454Google Scholar
  188. 188.
    Sawai J, Shiga H, Kojima H (2001) Kinetic analysis of death of bacteria in CaO powder slurry. Int Biodeterior Biodegradation 47:23–26Google Scholar
  189. 189.
    Tang Z-X, Lv B-F (2014) MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng 31:591–601Google Scholar
  190. 190.
    Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Sawaki T et al (2000) Antibacterial characteristics of magnesium oxide powder. World J Microbiol Biotechnol 16:187–194Google Scholar
  191. 191.
    Richards R, Li W, Decker S, Davidson C, Koper O, Zaikovski V et al (2000) Consolidation of metal oxide nanocrystals. Reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials. J Am Chem Soc 122:4921–4925Google Scholar
  192. 192.
    Koper OB, Klabunde JS, Marchin GL, Klabunde KJ, Stoimenov P, Bohra L (2002) Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins. Curr Microbiol 44:49–55PubMedGoogle Scholar
  193. 193.
    Krishnamoorthy K, Manivannan G, Kim SJ, Jeyasubramanian K, Premanathan M (2012) Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J Nanopart Res 14:1063Google Scholar
  194. 194.
    Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758Google Scholar
  195. 195.
    Hirakawa K, Mori M, Yoshida M, Oikawa S, Kawanishi S (2004) Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radical Res 38:439–447Google Scholar
  196. 196.
    Wong M-S, Chu W-C, Sun D-S, Huang H-S, Chen J-H, Tsai P-J et al (2006) Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens. Appl Environ Microbiol 72:6111–6116PubMedPubMedCentralGoogle Scholar
  197. 197.
    Besinis A, De Peralta T, Handy RD (2014) The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8:1–16PubMedGoogle Scholar
  198. 198.
    Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646Google Scholar
  199. 199.
    Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9:035004PubMedPubMedCentralGoogle Scholar
  200. 200.
    Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76PubMedGoogle Scholar
  201. 201.
    Liu Y, He L, Mustapha A, Li H, Hu Z, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: h7. J Appl Microbiol 107:1193–1201PubMedGoogle Scholar
  202. 202.
    Gil-Tomás J, Tubby S, Parkin IP, Narband N, Dekker L, Nair SP et al (2007) Lethal photosensitisation of Staphylococcus aureus using a toluidine blue O–tiopronin–gold nanoparticle conjugate. J Mater Chem 17:3739–3746Google Scholar
  203. 203.
    Kuo W-S, Chang C-N, Chang Y-T, Yeh C-S (2009) Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem Commun. CrossRefGoogle Scholar
  204. 204.
    Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB (2010) Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends Biotechnol 28:207–213PubMedGoogle Scholar
  205. 205.
    Perni S, Piccirillo C, Pratten J, Prokopovich P, Chrzanowski W, Parkin IP et al (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93PubMedGoogle Scholar
  206. 206.
    Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS (2006) Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 90:619–627PubMedGoogle Scholar
  207. 207.
    Bapista PPE, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950Google Scholar
  208. 208.
    Gu H, Ho P, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263Google Scholar
  209. 209.
    Burygin G, Khlebtsov B, Shantrokha A, Dykman L, Bogatyrev V, Khlebtsov N (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 4:794PubMedPubMedCentralGoogle Scholar
  210. 210.
    Grace AN, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—a brief study. Colloids Surf A Physicochemical Eng Asp 297:63–70Google Scholar
  211. 211.
    Saha B, Bhattacharya J, Mukherjee A, Ghosh A, Santra C, Dasgupta AK et al (2007) In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett 2:614PubMedCentralGoogle Scholar
  212. 212.
    Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20:6789–6798Google Scholar
  213. 213.
    Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23:085103PubMedGoogle Scholar
  214. 214.
    Sampath M, Vijayan R, Tamilarasu E, Tamilselvan A, Sengottuvelan B (2014) Green synthesis of novel jasmine bud-shaped copper nanoparticles. J Nanotechnol. CrossRefGoogle Scholar
  215. 215.
    Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W et al (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60:75–80Google Scholar
  216. 216.
    Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716PubMedGoogle Scholar
  217. 217.
    Mohammad G, Mishra VK, Pandey H (2008) Antioxidant properties of some nanoparticle may enhance wound healing in T2DM patient. Digest J Nanomater Biostruct 3:159–162Google Scholar
  218. 218.
    Hernandez-Delgadillo R, Velasco-Arias D, Martinez-Sanmiguel JJ, Diaz D, Zumeta-Dube I, Arevalo-Niño K et al (2013) Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int J Nanomed 8:1645Google Scholar
  219. 219.
    Luo Y, Hossain M, Wang C, Qiao Y, An J, Ma L et al (2013) Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria. Nanoscale 5:687–694PubMedGoogle Scholar
  220. 220.
    Nazari P, Dowlatabadi-Bazaz R, Mofid M, Pourmand M, Daryani N, Faramarzi M et al (2014) The antimicrobial effects and metabolomic footprinting of carboxyl-capped bismuth nanoparticles against Helicobacter pylori. Appl Biochem Biotechnol 172:570–579PubMedGoogle Scholar
  221. 221.
    Leid JG, Ditto AJ, Knapp A, Shah PN, Wright BD, Blust R et al (2011) In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother 67:138–148PubMedPubMedCentralGoogle Scholar
  222. 222.
    Arias LR, Yang L (2009) Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25:3003–3012PubMedGoogle Scholar
  223. 223.
    Dong L, Henderson A, Field C (2012) Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants. J Nanotechnol. CrossRefGoogle Scholar
  224. 224.
    Tegos GP, Demidova TN, Arcila-Lopez D, Lee H, Wharton T, Gali H et al (2005) Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem Biol 12:1127–1135PubMedPubMedCentralGoogle Scholar
  225. 225.
    Cataldo F, Da Ros T (2008) Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. Springer Science & Business Media, BerlinGoogle Scholar
  226. 226.
    Nakamura S, Mashino T (2009) Biological activities of water-soluble fullerene derivatives. Journal of Physics: Conference Series: IOP Publishing p. 012003Google Scholar
  227. 227.
    Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736PubMedPubMedCentralGoogle Scholar
  228. 228.
    Zhou C, Qi X, Li P, Chen WN, Mouad L, Chang MW et al (2009) High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of α-aminoacid-N-carboxyanhydrides. Biomacromol 11:60–67Google Scholar
  229. 229.
    Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Alternat Med. CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Sauvet G, Fortuniak W, Kazmierski K, Chojnowski J (2003) Amphiphilic block and statistical siloxane copolymers with antimicrobial activity. J Polym Sci Part A Polym Chem 41:2939–2948Google Scholar
  231. 231.
    Zhang H, Wang D, Butler R, Campbell NL, Long J, Tan B et al (2008) Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nat Nanotechnol 3:506PubMedGoogle Scholar
  232. 232.
    Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8:1Google Scholar
  233. 233.
    Antoine TE, Hadigal SR, Yakoub AM, Mishra YK, Bhattacharya P, Haddad C et al (2016) Intravaginal zinc oxide tetrapod nanoparticles as novel immunoprotective agents against genital herpes. J Immunol 196:4566–4575PubMedPubMedCentralGoogle Scholar
  234. 234.
    Broglie JJ, Alston B, Yang C, Ma L, Adcock AF, Chen W et al (2015) Antiviral activity of gold/copper sulfide core/shell nanoparticles against human norovirus virus-like particles. PLoS One 10:e0141050PubMedPubMedCentralGoogle Scholar
  235. 235.
    Amirkhanov RNMN, Amirkhanov NV (2015) Zarytova VF Composites of peptide nucleic acids with titanium dioxide nanoparticles IV Antiviral activity of nanocomposites containing DNA/PNA duplexes. Russ J Bioorg Chem 41:140–146Google Scholar
  236. 236.
    de Silva JMSE, Santos MI, Kobarg J, Bajgelman MC, Cardoso MB (2016) Viral inhibition mechanism mediated by surface-modified silica nanoparticles. ACS Appl Mater Interfaces 8:16564–16572Google Scholar
  237. 237.
    Lin Z, Li Y, Guo M, Xu T, Wang C, Zhao M et al (2017) The inhibition of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with zanamivir. RSC Adv 7:742–750Google Scholar
  238. 238.
    Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N et al (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed 8:4303Google Scholar
  239. 239.
    Tutaj K, Szlazak R, Szalapata K, Starzyk J, Luchowski R, Grudzinski W et al (2016) Amphotericin B-silver hybrid nanoparticles: synthesis, properties and antifungal activity. Nanomed Nanotechnol Biol Med 12:1095–1103Google Scholar
  240. 240.
    Chudzik B, Czernel G, Miaskowski A, Gagoś M (2017) Amphotericin B-copper (II) complex shows improved therapeutic index in vitro. Eur J Pharm Sci 97:9–21PubMedGoogle Scholar
  241. 241.
    Viet PV, Nguyen HT, Cao TM, Hieu LV (2016) Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J Nanomater 2016:6Google Scholar
  242. 242.
    Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4:165Google Scholar
  243. 243.
    Samberg ME, Oldenburg SJ, Monteiro-Riviere NA (2010) Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118:407PubMedGoogle Scholar
  244. 244.
    Zhang J, Wu L, Chan H-K, Watanabe W (2011) Formation, characterization, and fate of inhaled drug nanoparticles. Adv Drug Deliv Rev 63:441–455PubMedGoogle Scholar
  245. 245.
    Wu L, Zhang J, Watanabe W (2011) Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev 63:456–469PubMedGoogle Scholar
  246. 246.
    Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779PubMedGoogle Scholar

Copyright information

© SBIC 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyEast West College of ScienceBengaluruIndia
  2. 2.Department of Crop Science, Faculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations