MnTBAP inhibits bone loss in ovariectomized rats by reducing mitochondrial oxidative stress in osteoblasts

  • Xiangchang Cao
  • Deqing Luo
  • Teng Li
  • Zunxian Huang
  • Weitao Zou
  • Lei Wang
  • Kejian LianEmail author
  • Dasheng LinEmail author
Original Article


The development of postmenopausal osteoporosis is thought to be closely related to oxidative stress. Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), a novel superoxide dismutase (SOD) mimetic, could protect osteoblasts from cytotoxicity and dysfunction caused by oxidative stress. However, it is still unclear whether MnTBAP has effect on the development of postmenopausal osteoporosis. Here, we demonstrated that MnTBAP can inhibit bone mass loss and bone microarchitecture alteration, and increase the number of osteoblasts while reducing osteoclasts number, as well as improve the BMP-2 expression level in ovariectomized rat model. Additionally, MnTBAP can also prevent oxidative stress status up-regulation induced by ovariotomy and hydrogen peroxide (H2O2). Furthermore, MnTBAP reduced the effect of oxidative stress on osteoblasts differentiation and increased BMP-2 expression levels with a dose-dependent manner, via reducing the levels of mitochondrial oxidative stress in osteoblasts. Taken together, our findings provide new insights that MnTBAP inhibits bone loss in ovariectomized rats by reducing mitochondrial oxidative stress in osteoblasts, and maybe a potential drug in postmenopausal osteoporosis therapy.


Postmenopausal osteoporosis Ovariectomized rat MnTBAP Oxidative stress Osteoblast 



DSL acknowledges the National Natural Science Foundation of China (Grant No. 81600696).

Author contributions

Study design: XCC, KJL and DSL. Study conduct: XCC, DQL, TL, ZXH, WTZ and LW. Data analysis: XCC, DQL, TL. Drafting manuscript: XCC and DSL. Approving final version of manuscript: XCC, KJL and DSL. DSL takes responsibility for the integrity of the data analysis.

Compliance with ethical standards

Conflict of interest

All authors have no conflicts of interest.

Ethical approval

All procedures were approved by the Animal Care and Use Committee at Xiamen University.

Informed consent

This study does not involve human participants and therefore does not require informed consent.


  1. 1.
    Khosla S, Melton LJ 3rd, Riggs BL (2011) The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res 26:441–451CrossRefGoogle Scholar
  2. 2.
    Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, McCloskey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136CrossRefGoogle Scholar
  3. 3.
    Luo D, Ren H, Li T, Lian K, Lin D (2016) Rapamycin reduces severity of senile osteoporosis by activating osteocyte autophagy. Osteoporos Int 27:1093–1101CrossRefGoogle Scholar
  4. 4.
    Luo D, Ren H, Zhang H, Zhang P, Huang Z, Xian H, Lian K, Lin D (2017) The protective effects of triptolide on age-related bone loss in old male rats. Biomed Pharmacother 98:280–285CrossRefGoogle Scholar
  5. 5.
    Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y (2009) Oxidative stress in bone remodelling and disease. Trends Mol Med 15:468–477CrossRefGoogle Scholar
  6. 6.
    Zhou Q, Zhu L, Zhang D, Li N, Li Q, Dai P, Mao Y, Li X, Ma J, Huang S (2016) Oxidative stress-related biomarkers in postmenopausal osteoporosis: a systematic review and meta-analyses. Dis Markers 2016:7067984CrossRefGoogle Scholar
  7. 7.
    Zhang JK, Yang L, Meng GL, Yuan Z, Fan J, Li D, Chen JZ, Shi TY, Hu HM, Wei BY, Luo ZJ, Liu J (2013) Protection by salidroside against bone loss via inhibition of oxidative stress and bone-resorbing mediators. PLoS One 8:e57251CrossRefGoogle Scholar
  8. 8.
    Sendur OF, Turan Y, Tastaban E, Serter M (2009) Antioxidant status in patients with osteoporosis: a controlled study. Joint Bone Spine 76:514–518CrossRefGoogle Scholar
  9. 9.
    Sánchez-Rodríguez MA, Ruiz-Ramos M, Correa-Muñoz E, Mendoza-Núñez VM (2007) Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Disord 8:124CrossRefGoogle Scholar
  10. 10.
    Cervellati C, Bonaccorsi G, Cremonini E, Bergamini CM, Patella A, Castaldini C, Ferrazzini S, Capatti A, Picarelli V, Pansini FS, Massari L (2013) Bone mass density selectively correlates with serum markers of oxidative damage in post-menopausal women. Clin Chem Lab Med 51:333–338CrossRefGoogle Scholar
  11. 11.
    Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300CrossRefGoogle Scholar
  12. 12.
    Baek KH, Oh KW, Lee WY, Lee SS, Kim MK, Kwon HS, Rhee EJ, Han JH, Song KH, Cha BY, Lee KW, Kang MI (2010) Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif Tissue Int 87:226–235CrossRefGoogle Scholar
  13. 13.
    Badeau M, Adlercreutz H, Kaihovaara P, Tikkanen MJ (2005) Estrogen A-ring structure and antioxidative effect on lipoproteins. J Steroid Biochem Mol Biol 96:271–278CrossRefGoogle Scholar
  14. 14.
    Amir E, Freedman OC, Seruga B, Evans DG (2010) Assessing women at high risk of breast cancer: a review of risk assessment models. J Natl Cancer Inst 102:680–691CrossRefGoogle Scholar
  15. 15.
    Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, Senin U, Pacifici R, Cherubini A (2003) Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 88:1523–1527CrossRefGoogle Scholar
  16. 16.
    Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O’Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC (2007) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282:27285–27297CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Xu S, Li K, Tan K, Liang K, Wang J, Shen J, Zou W, Hu L, Cai D, Ding C, Li M, Xiao G, Liu B, Liu A, Bai X (2017) mTORC1 inhibits NF-κB/NFATc1 signaling and prevents osteoclast precursor differentiation, in vitro and in mice. J Bone Miner Res 32:1829–1840CrossRefGoogle Scholar
  18. 18.
    Mody N, Parhami F, Sarafian TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31:509–519CrossRefGoogle Scholar
  19. 19.
    Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, Luo SQ (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 314:197–207CrossRefGoogle Scholar
  20. 20.
    Bartell SM, Kim HN, Ambrogini E, Han L, Iyer S, Serra Ucer S, Rabinovitch P, Jilka RL, Weinstein RS, Zhao H, O’Brien CA, Manolagas SC, Almeida M (2014) FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nat Commun 5:3773CrossRefGoogle Scholar
  21. 21.
    Callaway DA, Jiang JX (2015) Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab 33:359–370CrossRefGoogle Scholar
  22. 22.
    Tang X, Luo YX, Chen HZ, Liu DP (2014) Mitochondria, endothelial cell function, and vascular diseases. Front Physiol 5:175CrossRefGoogle Scholar
  23. 23.
    Liu D, Shan Y, Valluru L, Bao F (2013) Mn(III) tetrakis (4-benzoic acid) porphyrin scavenges reactive species, reduces oxidative stress, and improves functional recovery after experimental spinal cord injury in rats: comparison with methylprednisolone. BMC Neurosci 14:23CrossRefGoogle Scholar
  24. 24.
    Valluru L, Diao Y, Hachmeister JE, Liu D (2012) Mn (III) tetrakis (4-benzoic acid) porphyrin protects against neuronal and glial oxidative stress and death after spinal cord injury. CNS Neurol Disord: Drug Targets 11:774–790CrossRefGoogle Scholar
  25. 25.
    Li Y, Shen G, Yu C, Li G, Shen J, Gong J, Xu Y (2014) Angiotensin II induces mitochondrial oxidative stress and mtDNA damage in osteoblasts by inhibiting SIRT1-FoxO3a-MnSOD pathway. Biochem Biophys Res Commun 455:113–118CrossRefGoogle Scholar
  26. 26.
    Li Y, Yu C, Shen G, Li G, Shen J, Xu Y, Gong J (2015) Sirt3-MnSOD axis represses nicotine-induced mitochondrial oxidative stress and mtDNA damage in osteoblasts. Acta Biochim Biophys Sin (Shanghai) 47:306–312CrossRefGoogle Scholar
  27. 27.
    Miyazono K, Maeda S, Imamura T (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 16:251–263CrossRefGoogle Scholar
  28. 28.
    Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241CrossRefGoogle Scholar
  29. 29.
    Sykaras N, Opperman LA (2003) Bone morphogenetic proteins (BMPs): how do they function and what can they offer the clinician? J Oral Sci 45:57–73CrossRefGoogle Scholar
  30. 30.
    Wan M, Cao X (2005) BMP signaling in skeletal development. Biochem Biophys Res Commun 328:651–657CrossRefGoogle Scholar
  31. 31.
    Bilican B, Fiore-Heriche C, Compston A, Allen ND, Chandran S (2008) Induction of Olig2 precursors by FGF involves BMP signalling blockade at the Smad level. PLoS One 3:e2863CrossRefGoogle Scholar
  32. 32.
    Park SB, Park SH, Kim NH, Chung CK (2013) BMP-2 induced early bone formation in spine fusion using rat ovariectomy osteoporosis model. Spine J 13:1273–1280CrossRefGoogle Scholar
  33. 33.
    Cakatay U, Aydin S, Yanar K, Uzun H (2010) Gender-dependent variations in systemic biomarkers of oxidative protein, DNA, and lipid damage in aged rats. Aging Male 13:51–58CrossRefGoogle Scholar
  34. 34.
    Martinovic J, Dopsaj V, Dopsaj MJ, Kotur-Stevuljevic J, Vujovic A, Stefanovic A, Nesic G (2009) Long-term effects of oxidative stress in volleyball players. Int J Sports Med 30:851–856CrossRefGoogle Scholar
  35. 35.
    Day BJ, Fridovich I, Crapo JD (1997) Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch Biochem Biophys 347:256–262CrossRefGoogle Scholar
  36. 36.
    Zingarelli B, Day BJ, Crapo JD, Salzman AL, Szabó C (1997) The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock. Br J Pharmacol 120:259–267CrossRefGoogle Scholar
  37. 37.
    Day BJ, Batinic-Haberle I, Crapo JD (1999) Metalloporphyrins are potent inhibitors of lipid peroxidation. Free Radic Biol Med 26:730–736CrossRefGoogle Scholar
  38. 38.
    Suresh MV, Yu B, Lakshminrusimha S, Machado-Aranda D, Talarico N, Zeng L, Davidson BA, Pennathur S, Raghavendran K (2013) The protective role of MnTBAP in oxidant-mediated injury and inflammation in a rat model of lung contusion. Surgery 154:980–990CrossRefGoogle Scholar
  39. 39.
    Hachmeister JE, Valluru L, Bao F, Liu D (2006) Mn (III) tetrakis (4-benzoic acid) porphyrin administered into the intrathecal space reduces oxidative damage and neuron death after spinal cord injury: a comparison with methylprednisolone. J Neurotrauma 23:1766–1778CrossRefGoogle Scholar
  40. 40.
    Yu J, Mao S, Zhang Y, Gong W, Jia Z, Huang S, Zhang A (2016) MnTBAP Therapy Attenuates Renal Fibrosis in Mice with 5/6 Nephrectomy. Oxid Med Cell Longev 2016:7496930Google Scholar
  41. 41.
    Venkatadri R, Iyer AK, Ramesh V, Wright C, Castro CA, Yakisich JS, Azad N (2017) MnTBAP inhibits bleomycin-induced pulmonary fibrosis by regulating VEGF and Wnt signaling. J Cell Physiol 232:506–516CrossRefGoogle Scholar
  42. 42.
    Malassagne B, Ferret PJ, Hammoud R, Tulliez M, Bedda S, Trébéden H, Jaffray P, Calmus Y, Weill B, Batteux F (2001) The superoxide dismutase mimetic MnTBAP prevents Fas-induced acute liver failure in the mouse. Gastroenterology 121:1451–1459CrossRefGoogle Scholar
  43. 43.
    Pires KM, Ilkun O, Valente M, Boudina S (2014) Treatment with a SOD mimetic reduces visceral adiposity, adipocyte death, and adipose tissue inflammation in high fat-fed mice. Obesity (Silver Spring) 22:178–187CrossRefGoogle Scholar
  44. 44.
    Jamaluddin MS, Lin PH, Yao Q, Chen C (2010) Non-nucleoside reverse transcriptase inhibitor efavirenz increases monolayer permeability of human coronary artery endothelial cells. Atherosclerosis 208:104–111CrossRefGoogle Scholar
  45. 45.
    Cui YY, Qian JM, Yao AH, Ma ZY, Qian XF, Zha XM, Zhao Y, Ding Q, Zhao J, Wang S, Wu J (2012) SOD mimetic improves the function, growth, and survival of small-size liver grafts after transplantation in rats. Transplantation 94:687–694CrossRefGoogle Scholar
  46. 46.
    Yao D, Brownlee M (2010) Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 59:249–255CrossRefGoogle Scholar
  47. 47.
    Yang YH, Li B, Zheng XF, Chen JW, Chen K, Jiang SD, Jiang LS (2014) Oxidative damage to osteoblasts can be alleviated by early autophagy through the endoplasmic reticulum stress pathway-implications for the treatment of osteoporosis. Free Radic Biol Med 77:10–20CrossRefGoogle Scholar
  48. 48.
    She F, Wang W, Wang Y, Tang P, Wei J, Chen H, Zhang B (2014) Melatonin protects MG63 osteoblast-like cells from hydrogen peroxide-induced cytotoxicity by maintaining mitochondrial function. Mol Med Rep 9:493–498CrossRefGoogle Scholar
  49. 49.
    Bartolomé A, López-Herradón A, Portal-Núñez S, García-Aguilar A, Esbrit P, Benito M, Guillén C (2013) Autophagy impairment aggravates the inhibitory effects of high glucose on osteoblast viability and function. Biochem J 455:329–337CrossRefGoogle Scholar
  50. 50.
    Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, Luu HH, An N, Breyer B, Vanichakarn P, Szatkowski JP, Park JY, He TC (2003) Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 85-a:1544–1552CrossRefGoogle Scholar
  51. 51.
    Chen D, Harris MA, Rossini G, Dunstan CR, Dallas SL, Feng JQ, Mundy GR, Harris SE (1997) Bone morphogenetic protein 2 (BMP-2) enhances BMP-3, BMP-4, and bone cell differentiation marker gene expression during the induction of mineralized bone matrix formation in cultures of fetal rat calvarial osteoblasts. Calcif Tissue Int 60:283–290CrossRefGoogle Scholar
  52. 52.
    Katagiri T, Watabe T (2016) Bone morphogenetic proteins. Cold Spring Harb Perspect Biol. Google Scholar

Copyright information

© The Japanese Society Bone and Mineral Research and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare GroupHuangshiChina
  2. 2.Department of Orthopaedic SurgeryThe Affiliated Southeast Hospital of Xiamen UniversityZhangzhouChina

Personalised recommendations