Advertisement

PEG10 counteracts signaling pathways of TGF-β and BMP to regulate growth, motility and invasion of SW1353 chondrosarcoma cells

  • Yuhei Yahiro
  • Shingo Maeda
  • Naohiro Shinohara
  • Go Jokoji
  • Daisuke Sakuma
  • Takao Setoguchi
  • Yasuhiro Ishidou
  • Satoshi Nagano
  • Setsuro Komiya
  • Noboru Taniguchi
Original Article
  • 89 Downloads

Abstract

Recently, we reported highly active transforming growth factor (TGF)-β and bone morphogenetic protein (BMP) signaling in human chondrosarcoma samples and concurrent downregulation of paternally expressed gene 10 (PEG10). PEG10 expression was suppressed by TGF-β signaling, and PEG10 interfered with the TGF-β and BMP-SMAD pathways in chondrosarcoma cells. However, the roles of PEG10 in bone tumors, including chondrosarcoma, remain unknown. Here, we report that PEG10 promotes SW1353 chondrosarcoma cell growth by preventing TGF-β1-mediated suppression. In contrast, PEG10 knockdown augments the TGF-β1-induced motility of SW1353 cells. Individually, TGF-β1 and PEG10 siRNA increase AKT phosphorylation, whereas an AKT inhibitor, MK2206, mitigates the effect of PEG10 silencing on cell migration. SW1353 cell invasion was enhanced by BMP-6, which was further increased by PEG10 silencing. The effect of siPEG10 was suppressed by inhibitors of matrix metalloproteinase (MMP). BMP-6 induced expression of MMP-1, -3, and -13, and PEG10 lentivirus or PEG10 siRNA downregulated or further upregulated these MMPs, respectively. PEG10 siRNA increased BMP-6-induced phosphorylation of p38 MAPK and AKT, whereas the p38 inhibitor SB203580 and MK2206 diminished SW1353 cell invasion by PEG10 siRNA. SB203580 and MK2206 impeded the enhancing effect of PEG10 siRNA on the BMP-6-induced expression of MMP-1, -3, and -13. Our findings suggest dual functions for PEG10: accelerating cell growth by suppressing TGF-β signaling and inhibiting cell motility and invasion by interfering with TGF-β and BMP signaling via the AKT and p38 pathways, respectively. Thus, PEG10 might be a molecular target for suppressing the aggressive phenotypes of chondrosarcoma cells.

Keywords

PEG10 Chondrosarcoma TGF-β BMP AKT 

Notes

Acknowledgements

This work was supported by grants from the Japan Society for the Promotion of Science (JSPS KAKENHI; 15K10486, 15K10410, 16K10910, 17K10972, 17K10933, 26462307, and 25462343) and The Vehicle Racing Commemorative Foundation. We gratefully acknowledge the technical assistance of Hui Gao. We thank Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Compliance with ethical standards

Statement of human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All authors declare that they have no conflicts of interest regarding the contents of this article.

Supplementary material

774_2018_946_MOESM1_ESM.jpg (560 kb)
Supplementary material 1 (JPEG 560 kb)
774_2018_946_MOESM2_ESM.docx (41 kb)
Supplementary material 2 (DOCX 41 kb)
774_2018_946_MOESM3_ESM.jpg (1.2 mb)
Supplementary material 3 (JPEG 1187 kb)
774_2018_946_MOESM4_ESM.jpg (528 kb)
Supplementary material 4 (JPEG 527 kb)
774_2018_946_MOESM5_ESM.jpg (1.2 mb)
Supplementary material 5 (JPEG 1220 kb)

References

  1. 1.
    Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, Kohda T, Ogura A, Yokoyama M, Kaneko-Ishino T, Ishino F (2006) Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet 38:101–106CrossRefPubMedGoogle Scholar
  2. 2.
    Akamatsu S, Wyatt AW, Lin D, Lysakowski S, Zhang F et al (2015) The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep 12:922–936CrossRefPubMedGoogle Scholar
  3. 3.
    Peng W, Fan H, Wu G, Wu J, Feng J (2016) Upregulation of long noncoding RNA PEG10 associates with poor prognosis in diffuse large B cell lymphoma with facilitating tumorigenicity. Clin Exp Med 16:177–182CrossRefPubMedGoogle Scholar
  4. 4.
    Kainz B, Shehata M, Bilban M, Kienle D, Heintel D et al (2007) Overexpression of the paternally expressed gene 10 (PEG10) from the imprinted locus on chromosome 7q21 in high-risk B-cell chronic lymphocytic leukemia. Int J Cancer 121:1984–1993CrossRefPubMedGoogle Scholar
  5. 5.
    Deng X, Hu Y, Ding Q, Han R, Guo Q, Qin J, Li J, Xiao R, Tian S, Hu W, Zhang Q, Xiong J (2014) PEG10 plays a crucial role in human lung cancer proliferation, progression, prognosis and metastasis. Oncol Rep 32:2159–2167CrossRefPubMedGoogle Scholar
  6. 6.
    Liu DC, Yang ZL, Jiang S (2011) Identification of PEG10 and TSG101 as carcinogenesis, progression, and poor-prognosis related biomarkers for gallbladder adenocarcinoma. Pathol Oncol Res 17:859–866CrossRefPubMedGoogle Scholar
  7. 7.
    Li CM, Margolin AA, Salas M, Memeo L, Mansukhani M, Hibshoosh H, Szabolcs M, Klinakis A, Tycko B (2006) PEG10 is a c-MYC target gene in cancer cells. Cancer Res 66:665–672CrossRefPubMedGoogle Scholar
  8. 8.
    Okabe H, Satoh S, Furukawa Y, Kato T, Hasegawa S, Nakajima Y, Yamaoka Y, Nakamura Y (2003) Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1. Cancer Res 63:3043–3048PubMedGoogle Scholar
  9. 9.
    Bang H, Ha SY, Hwang SH, Park CK (2015) Expression of PEG10 is associated with poor survival and tumor recurrence in hepatocellular carcinoma. Cancer Res Treat 47:844–852CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yoshibayashi H, Okabe H, Satoh S, Hida K, Kawashima K, Hamasu S, Nomura A, Hasegawa S, Ikai I, Sakai Y (2007) SIAH1 causes growth arrest and apoptosis in hepatoma cells through β-catenin degradation-dependent and -independent mechanisms. Oncol Rep 17:549–556PubMedGoogle Scholar
  11. 11.
    Zhang M, Sui C, Dai B, Shen W, Lu J, Yang J (2017) PEG10 is imperative for TGF-β1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Oncol Rep 37:510–518CrossRefPubMedGoogle Scholar
  12. 12.
    Li X, Xiao R, Tembo K, Hao L, Xiong M, Pan S, Yang X, Yuan W, Xiong J, Zhang Q (2016) PEG10 promotes human breast cancer cell proliferation, migration and invasion. Int J Oncol 48:1933–1942CrossRefPubMedGoogle Scholar
  13. 13.
    Ishii S, Yamashita K, Harada H, Ushiku H, Tanaka T, Nishizawa N, Yokoi K, Washio M, Ema A, Mieno H, Moriya H, Hosoda K, Waraya M, Katoh H, Watanabe M (2017) The H19-PEG10/IGF2BP3 axis promotes gastric cancer progression in patients with high lymph node ratios. Oncotarget 8:74567–74581PubMedPubMedCentralGoogle Scholar
  14. 14.
    Shigemoto K, Brennan J, Walls E, Watson CJ, Stott D, Rigby PW, Reith AD (2001) Identification and characterisation of a developmentally regulated mammalian gene that utilises-1 programmed ribosomal frameshifting. Nucleic Acids Res 29:4079–4088CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ikushima H, Miyazono K (2010) TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer 10:415–424CrossRefPubMedGoogle Scholar
  16. 16.
    Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Βiochem 147:35–51Google Scholar
  17. 17.
    Lux A, Beil C, Majety M, Barron S, Gallione CJ, Kuhn HM, Berg JN, Kioschis P, Marchuk DA, Hafner M (2005) Human retroviral gag- and gag-pol-like proteins interact with the transforming growth factor-β receptor activin receptor-like kinase 1. J Biol Chem 280:8482–8493CrossRefPubMedGoogle Scholar
  18. 18.
    Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–36810CrossRefPubMedGoogle Scholar
  19. 19.
    Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E (1999) Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression. J Biol Chem 274:27161–27167CrossRefPubMedGoogle Scholar
  20. 20.
    Henderson ED, Dahlin DC (1963) Chondrosarcoma of bone—a study of two hundred and eighty-eight cases. J Bone Jt Surg Am 45:1450–1458CrossRefGoogle Scholar
  21. 21.
    Giuffrida AY, Burgueno JE, Koniaris LG, Gutierrez JC, Duncan R, Scully SP (2009) Chondrosarcoma in the United States (1973 to 2003): an analysis of 2890 cases from the SEER database. J Bone Jt Surg Am 91:1063–1072CrossRefGoogle Scholar
  22. 22.
    Italiano A, Mir O, Cioffi A, Palmerini E, Piperno-Neumann S, Perrin C, Chaigneau L, Penel N, Duffaud F, Kurtz JE, Collard O, Bertucci F, Bompas E, Le Cesne A, Maki RG, Ray Coquard I, Blay JY (2013) Advanced chondrosarcomas: role of chemotherapy and survival. Ann Oncol 24:2916–2922CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Moussavi-Harami F, Mollano A, Martin JA, Ayoob A, Domann FE, Gitelis S, Buckwalter JA (2006) Intrinsic radiation resistance in human chondrosarcoma cells. Biochem Biophys Res Commun 346:379–385CrossRefPubMedGoogle Scholar
  24. 24.
    Dai X, Ma W, He X, Jha RK (2011) Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing’s sarcoma. Med Sci Monit 17:RA177–RA190CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    van Driel M, van Leeuwen JP (2014) Cancer and bone: a complex complex. Arch Biochem Biophys 561:159–166CrossRefPubMedGoogle Scholar
  26. 26.
    Boeuf S, Bovee JV, Lehner B, van den Akker B, van Ruler M, Cleton-Jansen AM, Richter W (2012) BMP and TGFβ pathways in human central chondrosarcoma: enhanced endoglin and Smad 1 signaling in high grade tumors. BMC Cancer 12:488CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Masi L, Malentacchi C, Campanacci D, Franchi A (2002) Transforming growth factor-β isoform and receptor expression in chondrosarcoma of bone. Virchows Arch 440:491–497CrossRefPubMedGoogle Scholar
  28. 28.
    Yeh YY, Chiao CC, Kuo WY, Hsiao YC, Chen YJ, Wei YY, Lai TH, Fong YC, Tang CH (2008) TGF-β1 increases motility and αvβ3 integrin up-regulation via PI3K, Akt and NF-κB-dependent pathway in human chondrosarcoma cells. Biochem Pharmacol 75:1292–1301CrossRefPubMedGoogle Scholar
  29. 29.
    Hou CH, Hsiao YC, Fong YC, Tang CH (2009) Bone morphogenetic protein-2 enhances the motility of chondrosarcoma cells via activation of matrix metalloproteinase-13. Bone 44:233–242CrossRefPubMedGoogle Scholar
  30. 30.
    Shinohara N, Maeda S, Yahiro Y, Sakuma D, Matsuyama K, Imamura K, Kawamura I, Setoguchi T, Ishidou Y, Nagano S, Komiya S (2017) TGF-β signalling and PEG10 are mutually exclusive and inhibitory in chondrosarcoma cells. Sci Rep 7:13494CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Goldring MB, Birkhead JR, Suen LF, Yamin R, Mizuno S, Glowacki J, Arbiser JL, Apperley JF (1994) Interleukin-1 β-modulated gene expression in immortalized human chondrocytes. J Clin Investig 94:2307–2316CrossRefPubMedGoogle Scholar
  32. 32.
    Tominaga H, Maeda S, Hayashi M, Takeda S, Akira S, Komiya S, Nakamura T, Akiyama H, Imamura T (2008) CCAAT/enhancer-binding protein β promotes osteoblast differentiation by enhancing Runx2 activity with ATF4. Mol Biol Cell 19:5373–5386CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K, Miyazono K, Kato M (2002) c-myc is a downstream target of the Smad pathway. J Biol Chem 277:854–861CrossRefPubMedGoogle Scholar
  34. 34.
    Miyazono K, Miyazawa K (2002) Id: a target of BMP signaling. Sci STKE 2002:pe40PubMedGoogle Scholar
  35. 35.
    Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF (1995) Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 92:5545–5549CrossRefPubMedGoogle Scholar
  36. 36.
    Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371:257–261CrossRefPubMedGoogle Scholar
  37. 37.
    Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C, Martin W, Fornwald J, Lehr R, Harling J, Gaster L, Callahan JF, Olson BA (2002) Inhibition of transforming growth factor (TGF)-β1-induced extracellular matrix with a novel inhibitor of the TGF-β type I receptor kinase activity: SB-431542. Mol Pharmacol 62:58–64CrossRefPubMedGoogle Scholar
  38. 38.
    Pretre V, Wicki A (2017) Inhibition of Akt and other AGC kinases: a target for clinical cancer therapy? Semin Cancer Biol.  https://doi.org/10.1016/j.semcancer.2017.04.011 PubMedGoogle Scholar
  39. 39.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174CrossRefPubMedGoogle Scholar
  40. 40.
    Boergermann JH, Kopf J, Yu PB, Knaus P (2010) Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, p38 and Akt signalling in C2C12 cells. Int J Biochem Cell Biol 42:1802–1807CrossRefPubMedGoogle Scholar
  41. 41.
    Pikul S, McDow Dunham KL, Almstead NG, De B, Natchus MG, Anastasio MV, McPhail SJ, Snider CE, Taiwo YO, Rydel T, Dunaway CM, Gu F, Mieling GE (1998) Discovery of potent, achiral matrix metalloproteinase inhibitors. J Med Chem 41:3568–3571CrossRefPubMedGoogle Scholar
  42. 42.
    Engel CK, Pirard B, Schimanski S, Kirsch R, Habermann J, Klingler O, Schlotte V, Weithmann KU, Wendt KU (2005) Structural basis for the highly selective inhibition of MMP-13. Chem Biol 12:181–189CrossRefPubMedGoogle Scholar
  43. 43.
    Yuan J, Dutton CM, Scully SP (2005) RNAi mediated MMP-1 silencing inhibits human chondrosarcoma invasion. J Orthop Res 23:1467–1474CrossRefPubMedGoogle Scholar
  44. 44.
    Tang CH, Yamamoto A, Lin YT, Fong YC, Tan TW (2010) Involvement of matrix metalloproteinase-3 in CCL5/CCR5 pathway of chondrosarcomas metastasis. Biochem Pharmacol 79:209–217CrossRefPubMedGoogle Scholar
  45. 45.
    Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 272:2446–2451CrossRefPubMedGoogle Scholar
  46. 46.
    Reunanen N, Li SP, Ahonen M, Foschi M, Han J, Kahari VM (2002) Activation of p38 alpha MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization. J Biol Chem 277:32360–32368CrossRefPubMedGoogle Scholar
  47. 47.
    Fong YC, Li TM, Wu CM, Hsu SF, Kao ST, Chen RJ, Lin CC, Liu SC, Wu CL, Tang CH (2008) BMP-2 increases migration of human chondrosarcoma cells via PI3K/Akt pathway. J Cell Physiol 217:846–855CrossRefPubMedGoogle Scholar
  48. 48.
    Wu MH, Lo JF, Kuo CH, Lin JA, Lin YM, Chen LM, Tsai FJ, Tsai CH, Huang CY, Tang CH (2012) Endothelin-1 promotes MMP-13 production and migration in human chondrosarcoma cells through FAK/PI3K/Akt/mTOR pathways. J Cell Physiol 227:3016–3026CrossRefPubMedGoogle Scholar
  49. 49.
    Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC (1995) SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 364:229–233CrossRefPubMedGoogle Scholar
  50. 50.
    Derynck R, Akhurst RJ, Balmain A (2001) TGF-β signaling in tumor suppression and cancer progression. Nat Genet 29:117–129CrossRefPubMedGoogle Scholar
  51. 51.
    Ikushima H, Miyazono K (2010) Cellular context-dependent “colors” of transforming growth factor-β signaling. Cancer Sci 101:306–312CrossRefPubMedGoogle Scholar
  52. 52.
    Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829CrossRefPubMedGoogle Scholar
  53. 53.
    Chen JC, Yang ST, Lin CY, Hsu CJ, Tsai CH, Su JL, Tang CH (2014) BMP-7 enhances cell migration and αvβ3 integrin expression via a c-Src-dependent pathway in human chondrosarcoma cells. PLoS One 9:e112636CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Yuhei Yahiro
    • 1
    • 2
  • Shingo Maeda
    • 1
  • Naohiro Shinohara
    • 1
    • 2
  • Go Jokoji
    • 1
    • 2
  • Daisuke Sakuma
    • 1
    • 2
  • Takao Setoguchi
    • 1
  • Yasuhiro Ishidou
    • 1
  • Satoshi Nagano
    • 2
  • Setsuro Komiya
    • 1
    • 2
  • Noboru Taniguchi
    • 1
    • 2
  1. 1.Department of Medical Joint MaterialsKagoshima UniversityKagoshimaJapan
  2. 2.Department of Orthopaedic SurgeryKagoshima UniversityKagoshimaJapan

Personalised recommendations