Journal of Bone and Mineral Metabolism

, Volume 36, Issue 6, pp 691–699 | Cite as

Effects of combined human parathyroid hormone (1–34) and menaquinone-4 treatment on the interface of hydroxyapatite-coated titanium implants in the femur of osteoporotic rats

  • Hang Li
  • Qiang Zhou
  • Bing-Li Bai
  • She-Ji Weng
  • Zong-Yi Wu
  • Zhong-Jie Xie
  • Zhen-Hua Feng
  • Liang Cheng
  • Viraj Boodhun
  • Lei YangEmail author
Original Article


The objective of this study was to investigate the effects of human parathyroid hormone (1–34) (PTH1–34; PTH) plus menaquinone-4 (vitamin K2; MK) on the osseous integration of hydroxyapatite (HA)-coated implants in osteoporotic rats. Ovariectomized female Sprague–Dawley rats were used for the study. Twelve weeks after bilateral ovariectomy, HA-coated titanium implants were inserted bilaterally in the femoral medullary canal of the remaining 40 ovariectomized rats. All animals were then randomly assigned to four groups: Control, MK, PTH and PTH + MK. The rats from groups MK, PTH and PTH + MK received vitamin K2 (30 mg/kg/day), PTH1–34 (60 μg/kg, three times a week), or both for 12 weeks. Thereafter, serum levels of γ-carboxylated osteocalcin (Gla-OC) were quantitated by ELISA and the bilateral femurs of rats were harvested for evaluation. The combination of PTH and MK clearly increased the serum levels of Gla-OC (a specific marker for bone formation) compared to PTH or MK alone. The results of our study indicated that all treated groups had increased new bone formation around the surface of implants and increased push-out force compared to Control. In addition, PTH + MK treatment showed the strongest effects in histological, micro-computed tomography and biomechanical tests. In summary, our results confirm that treatment with PTH1–34 and MK together may have a therapeutic advantage over PTH or MK monotherapy on bone healing around HA-coated implants in osteoporotic rats.


Parathyroid hormone (1–34) Menaquinone-4 Vitamin K2 Implant Osseointegration 



This work was funded by a research grant to Natural Science Foundation of Zhejiang Province (Grant No.: LY16H250002).

Compliance with ethical standards

Conflict of interest

All authors have no conflict of interest.

Ethical approval

Statement of ethical approval: Animals were handled with the approval of the Animal Experimentation Ethics Committee of Second Affiliated Hospital of Wenzhou Medical University.


  1. 1.
    Patel A, Pavlou G, Mújica-Mota RE, Toms AD (2015) The epidemiology of revision total knee and hip arthroplasty in England and Wales: a comparative analysis with projections for the United States. A study using the National Joint Registry dataset. Bone Joint J 97-B:1076–1081CrossRefGoogle Scholar
  2. 2.
    Tao ZS, Zhou WS, Bai BL, Cui W, Lv YX, Yu XB, Huang ZL, Tu KK, Zhou Q, Sun T (2016) The effects of combined human parathyroid hormone (1–34) and simvastatin treatment on the interface of hydroxyapatite-coated titanium rods implanted into osteopenic rats femurs. J Mater Sci Mater Med 27:43CrossRefGoogle Scholar
  3. 3.
    Duarte PM, César Neto JB, Gonçalves PF, Sallum EA, Jf N (2003) Estrogen deficiency affects bone healing around titanium implants: a histometric study in rats. Implant Dent 12:340CrossRefGoogle Scholar
  4. 4.
    Philip S, Cyrus C (2006) Osteoporosis. Lancet 367:2010–2018CrossRefGoogle Scholar
  5. 5.
    Jinno T, Kirk SS, Goldberg VM (2004) Effects of calcium ion implantation on osseointegration of surface-blasted titanium alloy femoral implants in a canine total hip arthroplasty model. J Arthroplast 19:102–109CrossRefGoogle Scholar
  6. 6.
    Sul YT, Johansson C, Byon E, Albrektsson T (2005) The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials 26:6720–6730CrossRefGoogle Scholar
  7. 7.
    Tao ZS, Zhou WS, Tu KK, Huang ZL, Zhou Q, Sun T, Lv YX, Cui W, Yang L (2015) The effects of combined human parathyroid hormone (1–34) and simvastatin treatment on osseous integration of hydroxyapatite-coated titanium implants in the femur of ovariectomized rats. Injury 46:2164–2169CrossRefGoogle Scholar
  8. 8.
    Reikeras O, Gunderson RB (2003) Excellent results of HA coating on a grit-blasted stem: 245 patients followed for 8–12 years. Acta Orthop Scand 74:140CrossRefGoogle Scholar
  9. 9.
    Palm L, Jacobsson SA, Ivarsson I (2002) Hydroxyapatite coating improves 8- to 10-year performance of the link RS cementless femoral stem. J Arthroplast 17:172–175CrossRefGoogle Scholar
  10. 10.
    Hara T, Hayashi K, Nakashima Y, Kanemaru T, Iwamoto Y (1999) The effect of hydroxyapatite coating on the bonding of bone to titanium implants in the femora of ovariectomised rats. J Bone Joint Surg Br 81:705–709CrossRefGoogle Scholar
  11. 11.
    Hayashi K, Uenoyama K, Mashima T, Sugioka Y (1994) Remodelling of bone around hydroxyapatite and titanium in experimental osteoporosis. Biomaterials 15:11–16CrossRefGoogle Scholar
  12. 12.
    Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC (2009) Biology of implant osseointegration. J Musculoskel Neuron 9:61Google Scholar
  13. 13.
    Fini M, Giavaresi G, Rimondini L, Giardino R (2002) Titanium alloy osseointegration in cancellous and cortical bone of ovariectomized animals: histomorphometric and bone hardness measurements. Int J Oral Maxillofac Implants 17:28–37PubMedGoogle Scholar
  14. 14.
    Gabet Y, Müller R, Levy J, Dimarchi R, Chorev M, Bab I, Kohavi D (2006) Parathyroid hormone 1–34 enhances titanium implant anchorage in low-density trabecular bone: a correlative micro-computed tomographic and biomechanical analysis. Bone 39:276–282CrossRefGoogle Scholar
  15. 15.
    Tao ZS, Qiang Z, Tu KK, Huang ZL, Xu HM, Sun T, Lv YX, Cui W, Yang L (2015) Treatment study of distal femur for parathyroid hormone (1–34) and β-tricalcium phosphate on bone formation in critical-sized defects in rats. J Craniomaxillofac Surg 43:2136–2143CrossRefGoogle Scholar
  16. 16.
    Shirota T, Tashiro M, Ohno K, Yamaguchi A (2003) Effect of intermittent parathyroid hormone (1–34) treatment on the bone response after placement of titanium implants into the tibia of ovariectomized rats. J Oral Maxillofac Surg 61:471–480CrossRefGoogle Scholar
  17. 17.
    Shearer MJ (1995) Vitamin K. Lancet 345:229–234CrossRefGoogle Scholar
  18. 18.
    Shiraki M, Shiraki Y, Aoki C, Miura M (2000) Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J Bone Miner Res 15:515–521CrossRefGoogle Scholar
  19. 19.
    Iwamoto I, Kosha S, Noguchi SI, Murakami M, Fujino T, Douchi T, Nagata Y (1999) A longitudinal study of the effect of vitamin K2 on bone mineral density in postmenopausal women; a comparative study with vitamin D3 and estrogen–progestin therapy. Maturitas 31:161–164CrossRefGoogle Scholar
  20. 20.
    Shimizu T, Takahata M, Kameda Y, Hamano H, Ito T, Kimura-Suda H, Todoh M, Tadano S, Iwasaki N (2014) Vitamin K-dependent carboxylation of osteocalcin affects the efficacy of teriparatide (PTH 1–34) for skeletal repair. Bone 64:95–101CrossRefGoogle Scholar
  21. 21.
    Kaneki M, Hedges SJ, Hosoi T, Fujiwara S, Lyons A, Crean SJ, Ishida N, Nakagawa M, Takechi M, Sano Y (2001) Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2: possible implications for hip-fracture risk. Nutrition 17:315–321CrossRefGoogle Scholar
  22. 22.
    Yamaguchi M, Kakuda H, Ying HG, Tsukamoto Y (2000) Prolonged intake of fermented soybean (natto) diets containing vitamin K2 (menaquinone-7) prevents bone loss in ovariectomized rats. J Bone Miner Metab 18:71–76CrossRefGoogle Scholar
  23. 23.
    Mawatari T, Hiromasa MMD, Higaki H, Moro-Oka T, Kurata K, Murakami T, Iwamoto Y (2000) Effect of vitamin K2 on three-dimensional trabecular microarchitecture in ovariectomized rats. J Bone Miner Res 15:1810–1817CrossRefGoogle Scholar
  24. 24.
    Inoue T, Fujita T, Kishimoto H, Makino T, Nakamura T, Nakamura T, Sato T, Yamazaki K (2009) Randomized controlled study on the prevention of osteoporotic fractures (OF study): a phase IV clinical study of 15-mg menatetrenone capsules. J Bone Miner Metab 27:66–75CrossRefGoogle Scholar
  25. 25.
    Iwamoto J (2014) Vitamin K2 therapy for postmenopausal osteoporosis. Nutrients 6:1971–1980CrossRefGoogle Scholar
  26. 26.
    Nagura N, Komatsu J, Iwase H, Hosoda H, Ohbayashi O, Nagaoka I, Kaneko K (2015) Effects of the combination of vitamin K and teriparatide on the bone metabolism in ovariectomized rats. Biomed Rep 3:295–300CrossRefGoogle Scholar
  27. 27.
    Chen B, Li Y, Xie D, Yang X (2012) Low-magnitude high-frequency loading via whole body vibration enhances bone-implant osseointegration in ovariectomized rats. J Orthop Res 30:733–739CrossRefGoogle Scholar
  28. 28.
    Virdi AS, Liu M, Sena K, Maletich J, Mcnulty M, Ke HZ, Sumner DR (2012) Sclerostin antibody increases bone volume and enhances implant fixation in a rat model. J Bone Joint Surg Am 94:1670–1680CrossRefGoogle Scholar
  29. 29.
    Li YF, Zhou CC, Li JH, Luo E, Zhu SS, Feng G, Hu J (2012) The effects of combined human parathyroid hormone (1–34) and zoledronic acid treatment on fracture healing in osteoporotic rats. Osteoporos Int 23:1463–1474CrossRefGoogle Scholar
  30. 30.
    He F, Yang G, Wang X, Zhao S (2009) Effect of electrochemically deposited nanohydroxyapatite on bone bonding of sandblasted/dual acid-etched titanium implant. Int J Oral Maxillofac Implants 24:790PubMedGoogle Scholar
  31. 31.
    Li YF, Li XD, Bao CY, Chen QM, Zhang H, Hu J (2013) Promotion of peri-implant bone healing by systemically administered parathyroid hormone (1–34) and zoledronic acid adsorbed onto the implant surface. Osteoporos Int 24:1063–1071CrossRefGoogle Scholar
  32. 32.
    Gabet Y, Kohavi D, Kohler T, Baras M, Müller R, Bab I (2008) Trabecular bone gradient in rat long bone metaphyses: mathematical modeling and application to morphometric measurements and correction of implant positioning. J Bone Miner Res 23:48–57CrossRefGoogle Scholar
  33. 33.
    Li Y, Li Q, Zhu S, Luo E, Li J, Feng G, Liao Y, Hu J (2010) The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials 31:9006–9014CrossRefGoogle Scholar
  34. 34.
    Tao ZS, Zhou WS, He XW, Liu W, Bai BL, Zhou Q, Huang ZL, Tu KK, Li H, Sun T (2016) A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. Mater Sci Eng C Mater Biol Appl 62:226CrossRefGoogle Scholar
  35. 35.
    Turner RT, Vandersteenhoven JJ, Bell NH (2010) The effects of ovariectomy and 17 beta-estradiol on cortical bone histomorphometry in growing rats. J Bone Miner Res 2:115–122CrossRefGoogle Scholar
  36. 36.
    Koshihara Y, Hoshi K (1997) Vitamin K2 enhances osteocalcin accumulation in the extracellular matrix of human osteoblasts in vitro. J Bone Miner Res 12:431–438CrossRefGoogle Scholar
  37. 37.
    Vermeer C, Jie KS, Knapen MH (1995) Role of vitamin K in bone metabolism. Annu Rev Nutr 15:1–22CrossRefGoogle Scholar
  38. 38.
    Hara K, Akiyama Y, Nakamura T, Murota S, Morita I (1995) The inhibitory effect of vitamin K2 (menatetrenone) on bone resorption may be related to its side chain. Bone 16:179–184CrossRefGoogle Scholar
  39. 39.
    Iwasaki Y, Yamato H, Murayama H, Takahashi T, Ezawa I, Kurokawa K, Fukagawa M (2002) Menatetrenone prevents osteoblast dysfunction in unilateral sciatic neurectomized rats. Jpn J Pharmacol 90:88–93CrossRefGoogle Scholar
  40. 40.
    Matsumoto T, Miyakawa T, Yamamoto D (2012) Effects of vitamin K on the morphometric and material properties of bone in the tibiae of growing rats. Metabolism 61:407–414CrossRefGoogle Scholar
  41. 41.
    Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214CrossRefGoogle Scholar
  42. 42.
    Saito M, Fujii K, Soshi S, Tanaka T (2005) Effects of vitamin B6 and vitamin K2 on bone mechanical properties and collagen crosslinks in spontaneously diabetic WBN/Kob rats. J Bone Miner Res Suppl SU420Google Scholar
  43. 43.
    Roy ME, Nishimoto SK, Rho JY, Bhattacharya SK, Lin JS, Pharr GM (2001) Correlations between osteocalcin content, degree of mineralization, and mechanical properties of C. carpio rib bone. J Biomed Mater Res 54:547–553CrossRefGoogle Scholar
  44. 44.
    Dayer R, Brennan TC, Rizzoli R, Ammann P (2010) PTH improves titanium implant fixation more than pamidronate or renutrition in osteopenic rats chronically fed a low protein diet. Osteoporos Int 21:957–967CrossRefGoogle Scholar
  45. 45.
    Dayer R, Badoud I, Rizzoli R, Ammann P (2007) Defective implant osseointegration under protein undernutrition: prevention by PTH or pamidronate. J Bone Miner Res 22:1526–1533CrossRefGoogle Scholar
  46. 46.
    Ichikawa T, Horieinoue K, Ikeda K, Blumberg B, Inoue S (2007) Vitamin K2 induces phosphorylation of protein kinase a and expression of novel target genes in osteoblastic cells. J Mol Endocrinol 39:4–239CrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  • Hang Li
    • 1
  • Qiang Zhou
    • 2
  • Bing-Li Bai
    • 1
  • She-Ji Weng
    • 1
  • Zong-Yi Wu
    • 1
  • Zhong-Jie Xie
    • 1
  • Zhen-Hua Feng
    • 1
  • Liang Cheng
    • 1
  • Viraj Boodhun
    • 1
  • Lei Yang
    • 1
    Email author
  1. 1.Department of Orthopaedic SurgeryThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
  2. 2.Department of Orthopedics SurgeryWenzhou Hospital of Integrated Traditional Chinese and Western MedicineWenzhouChina

Personalised recommendations